亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we first position the current dwell selection among gaze-based interactions and its advantages against head-gaze selection, which is the mainstream interface for HMDs. Next, we show how dwell selection and head-gaze selection are used in an actual interaction situation. By comparing these two selection methods, we describe the potential of dwell selection as an essential AR/VR interaction.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Better · 人工神經網絡 · 有向 · Neural Networks ·
2022 年 6 月 7 日

Most obstacle avoidance algorithms are only effective in specific environments, and they have low adaptability to some new environments. In this paper, we propose a trajectory learning (TL)-based obstacle avoidance algorithm, which can learn implicit obstacle avoidance mechanism from trajectories generated by general obstacle avoidance algorithms and achieves better adaptability. Specifically, we define a general data structure to describe the obstacle avoidance mechanism. Based on this structure, we transform the learning of the obstacle avoidance algorithm into a multiclass classification problem about the direction selection. Then, we design an artificial neural network (ANN) to fit multiclass classification function through supervised learning and finally obtain the obstacle avoidance mechanism that generates the observed trajectories. Our algorithm can obtain the obstacle avoidance mechanism similar to that demonstrated in the trajectories, and are adaptable to unseen environments. The automatic learning mechanism simplifies modification and debugging of obstacle avoidance algorithms in applications. Simulation results demonstrate that the proposed algorithm can learn obstacle avoidance strategy from trajectories and achieve better adaptability.

This study uses supervised machine learning (SML) and explainable artificial intelligence (AI) to model, predict and understand human decision-making during skillful joint-action. Long short-term memory networks were trained to predict the target selection decisions of expert and novice actors completing a dyadic herding task. Results revealed that the trained models were expertise specific and could not only accurately predict the target selection decisions of expert and novice herders but could do so at timescales that preceded an actor's conscious intent. To understand what differentiated the target selection decisions of expert and novice actors, we then employed the explainable-AI technique, SHapley Additive exPlanation, to identify the importance of informational features (variables) on model predictions. This analysis revealed that experts were more influenced by information about the state of their co-herders compared to novices. The utility of employing SML and explainable-AI techniques for investigating human decision-making is discussed.

In recent years, the millimeter-wave radar to identify human behavior has been widely used in medical,security, and other fields. When multiple radars are performing detection tasks, the validity of the features contained in each radar is difficult to guarantee. In addition, processing multiple radar data also requires a lot of time and computational cost. The Complementary Ensemble Empirical Mode Decomposition-Energy Slice (CEEMD-ES) multistatic radar selection method is proposed to solve these problems. First, this method decomposes and reconstructs the radar signal according to the difference in the reflected echo frequency between the limbs and the trunk of the human body. Then, the radar is selected according to the difference between the ratio of echo energy of limbs and trunk and the theoretical value. The time domain, frequency domain and various entropy features of the selected radar are extracted. Finally, the Extreme Learning Machine (ELM) recognition model of the ReLu core is established. Experiments show that this method can effectively select the radar, and the recognition rate of three kinds of human actions is 98.53%.

This paper introduces a model of multi-unit organizations with either static structures, i.e., they are designed top-down following classical approaches to organizational design, or dynamic structures, i.e., the structures emerge over time from micro-level decisions. In the latter case, the units are capable of learning about the technical interdependencies of the task they face, and they use their knowledge by adapting the task allocation from time to time. In both static and dynamic organizations, searching for actions to increase the performance can either be carried out individually or collaboratively. The results indicate that (i) collaborative search processes can help overcome the adverse effects of inefficient task allocations as long as there is an internal fit with other organizational design elements, and (ii) for dynamic organizations, the emergent task allocation does not necessarily mirror the technical interdependencies of the task the organizations face, even though the same (or even higher) performances are achieved.

The Laboratory Automation Plug & Play (LAPP) framework is a high-level abstraction layer that makes the autonomous operation of life science laboratory robots possible. The plug & play nature lies in the fact that the manual teaching and configuration of robots is not required. A digital twin (DT) based concept is proposed that outlines the types of information that has to be provided for each relevant component of the system. In particular, for the devices that the robot interfaces with, the robot positions have to be defined beforehand in a device-attached coordinate system (CS) by the vendor. This CS has to be detectable by the vision system of the robot by means of optical markers placed on the front side of the device. With that, the robot is capable of tending the machine by performing the pick-and-place type transportation of standard sample carriers. This basic use case is the primary scope of the LAPP-DT framework. The hardware scope is limited to simple benchtop and mobile manipulators with parallel grippers at this stage. This paper first provides an overview of relevant literature and state-of-the-art solutions, after which it outlines the framework on the conceptual level, followed by the specification of the relevant DT parameters for the robot, for the devices and for the facility. Finally, appropriate technologies and strategies are identified for the implementation.

Reconfigurable intelligent surface (RIS) can effectively control the wavefront of the impinging signals and has emerged as a cost-effective promising solution to improve the spectrum and energy efficiency of wireless systems. Most existing researches on RIS assume that the hardware operations are perfect. However, both physical transceiver and RIS suffer from inevitable hardware impairments in practice, which can lead to severe system performance degradation and increase the complexity of beamforming optimization. Consequently, the existing researches on RIS, including channel estimation, beamforming optimization, spectrum and energy efficiency analysis, etc., cannot directly apply to the case of hardware impairments. In this paper, by taking hardware impairments into consideration, we conduct the joint transmit and reflect beamforming optimization, and reevaluate the system performance. First, we characterize the closed-form estimators of direct and cascaded channels in both single-user and multi-user cases, and analyze the impact of hardware impairments on channel estimation accuracy. Then, the optimal transmit beamforming solution is derived, and a gradient descent method-based algorithm is also proposed to optimize the reflect beamforming. Moreover, we analyze the three types of asymptotic channel capacities with respect to the transmit power, the antenna number, and the reflecting element number. Finally, in terms of the system energy consumption, we analyze the power scaling law and the energy efficiency. Our experimental results also reveal an encouraging phenomenon that the RIS-assisted wireless system with massive reflecting elements can achieve both high spectrum and energy efficiency without the need for massive antennas and without allocating too many resources to optimize the reflect beamforming.

Transformer, the latest technological advance of deep learning, has gained prevalence in natural language processing or computer vision. Since medical imaging bear some resemblance to computer vision, it is natural to inquire about the status quo of Transformers in medical imaging and ask the question: can the Transformer models transform medical imaging? In this paper, we attempt to make a response to the inquiry. After a brief introduction of the fundamentals of Transformers, especially in comparison with convolutional neural networks (CNNs), and highlighting key defining properties that characterize the Transformers, we offer a comprehensive review of the state-of-the-art Transformer-based approaches for medical imaging and exhibit current research progresses made in the areas of medical image segmentation, recognition, detection, registration, reconstruction, enhancement, etc. In particular, what distinguishes our review lies in its organization based on the Transformer's key defining properties, which are mostly derived from comparing the Transformer and CNN, and its type of architecture, which specifies the manner in which the Transformer and CNN are combined, all helping the readers to best understand the rationale behind the reviewed approaches. We conclude with discussions of future perspectives.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

北京阿比特科技有限公司