亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The landscape of information has experienced significant transformations with the rapid expansion of the internet and the emergence of online social networks. Initially, there was optimism that these platforms would encourage a culture of active participation and diverse communication. However, recent events have brought to light the negative effects of social media platforms, leading to the creation of echo chambers, where users are exposed only to content that aligns with their existing beliefs. Furthermore, malicious individuals exploit these platforms to deceive people and undermine democratic processes. To gain a deeper understanding of these phenomena, this chapter introduces a computational method designed to identify coordinated inauthentic behavior within Facebook groups. The method focuses on analyzing posts, URLs, and images, revealing that certain Facebook groups engage in orchestrated campaigns. These groups simultaneously share identical content, which may expose users to repeated encounters with false or misleading narratives, effectively forming "disinformation echo chambers." This chapter concludes by discussing the theoretical and empirical implications of these findings.

相關內容

Facebook 是一個社交網(wang)絡服(fu)務網(wang)站,于 2004 年(nian) 2 月(yue) 4 日(ri)上(shang)(shang)線(xian)。從 2006 年(nian) 9 月(yue)到 2007 年(nian) 9 月(yue)間,該網(wang)站在全(quan)美網(wang)站中的排名(ming)由第 60 名(ming)上(shang)(shang)升至第 7 名(ming)。同時 Facebook 是美國排名(ming)第一的照片分享站點。 2012年(nian) 2 月(yue) 1 日(ri),Facebook向美國證(zheng)券交易委(wei)員(yuan)會提交集(ji)資規模(mo)為 50 億美元的上(shang)(shang)市申請。

Representations learned by pre-training a neural network on a large dataset are increasingly used successfully to perform a variety of downstream tasks. In this work, we take a closer look at how features are encoded in such pre-trained representations. We find that learned representations in a given layer exhibit a degree of diffuse redundancy, ie, any randomly chosen subset of neurons in the layer that is larger than a threshold size shares a large degree of similarity with the full layer and is able to perform similarly as the whole layer on a variety of downstream tasks. For example, a linear probe trained on $20\%$ of randomly picked neurons from the penultimate layer of a ResNet50 pre-trained on ImageNet1k achieves an accuracy within $5\%$ of a linear probe trained on the full layer of neurons for downstream CIFAR10 classification. We conduct experiments on different neural architectures (including CNNs and Transformers) pre-trained on both ImageNet1k and ImageNet21k and evaluate a variety of downstream tasks taken from the VTAB benchmark. We find that the loss and dataset used during pre-training largely govern the degree of diffuse redundancy and the "critical mass" of neurons needed often depends on the downstream task, suggesting that there is a task-inherent redundancy-performance Pareto frontier. Our findings shed light on the nature of representations learned by pre-trained deep neural networks and suggest that entire layers might not be necessary to perform many downstream tasks. We investigate the potential for exploiting this redundancy to achieve efficient generalization for downstream tasks and also draw caution to certain possible unintended consequences. Our code is available at \url{//github.com/nvedant07/diffused-redundancy}.

We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-degree is proportional to the arboricity $\alpha$ of the graph, in, either, an amortised update time of $O(\log^2 n \log \alpha)$, or a worst-case update time of $O(\log^3 n \log \alpha)$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off. Namely, the improved update time of either $O(\log n \log \alpha)$, amortised, or $O(\log ^2 n \log \alpha)$, worst-case, for the problem of maintaining an edge-orientation with at most $O(\alpha + \log n)$ out-edges per vertex. Finally, all of our algorithms naturally limit the recourse to be polylogarithmic in $n$ and $\alpha$. Our algorithms adapt to the current arboricity of the graph. Moreover, further analysis shows that they can yield a $(1 + \varepsilon)$-approximation of the arboricity or the subgraph density at the cost of increased update time.

As more and more decisions that have a significant ethical dimension are being outsourced to AI systems, it is important to have a definition of moral responsibility that can be applied to AI systems. Moral responsibility for an outcome of an agent who performs some action is commonly taken to involve both a causal condition and an epistemic condition: the action should cause the outcome, and the agent should have been aware -- in some form or other -- of the possible moral consequences of their action. This paper presents a formal definition of both conditions within the framework of causal models. I compare my approach to the existing approaches of Braham and van Hees (BvH) and of Halpern and Kleiman-Weiner (HK). I then generalize my definition into a degree of responsibility.

Domain fronting is a network communication technique that involves leveraging (or abusing) content delivery networks (CDNs) to disguise the final destination of network packets by presenting them as if they were intended for a different domain than their actual endpoint. This technique can be used for both benign and malicious purposes, such as circumventing censorship or hiding malware-related communications from network security systems. Since domain fronting has been known for a few years, some popular CDN providers have implemented traffic filtering approaches to curb its use at their CDN infrastructure. However, it remains unclear to what extent domain fronting has been mitigated. To better understand whether domain fronting can still be effectively used, we propose a systematic approach to discover CDNs that are still prone to domain fronting. To this end, we leverage passive and active DNS traffic analysis to pinpoint domain names served by CDNs and build an automated tool that can be used to discover CDNs that allow domain fronting in their infrastructure. Our results reveal that domain fronting is feasible in 22 out of 30 CDNs that we tested, including some major CDN providers like Akamai and Fastly. This indicates that domain fronting remains widely available and can be easily abused for malicious purposes.

Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司