亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Shape optimization approaches to inverse design offer low-dimensional, physically-guided parameterizations of structures by representing them as combinations of shape primitives. However, on discretized rectilinear simulation grids, computing the gradient of a user objective via the adjoint variables method requires a sum reduction of the forward/adjoint field solutions and the Jacobian of the simulation material distribution with respect to the structural shape parameters. These shape parameters often perturb large or global parts of the simulation grid resulting in many non-zero Jacobian entries, which are typically computed by finite-difference in practice. Consequently, the gradient calculation can be non-trivial. In this work we propose to accelerate the gradient calculation by invoking automatic differentiation (AutoDiff) in instantiations of structural material distributions. In doing so, we develop extensible differentiable mappings from shape parameters to shape primitives and differentiable effective logic operations (denoted AutoDiffGeo). These AutoDiffGeo definitions may introduce some additional discretization error into the field solutions because they relax notions of sub-pixel smoothing along shape boundaries. However, we show that some mappings (e.g. simple cuboids) can achieve zero error with respect to volumetric averaging strategies. We demonstrate AutoDiff enhanced shape optimization using three integrated photonic examples: a multi-etch blazed grating coupler, a non-adiabatic waveguide transition taper, and a polarization-splitting grating coupler. We find accelerations of the gradient calculation by AutoDiff relative to finite-difference often exceed 50x, resulting in total wall time accelerations of 4x or more on the same hardware with little or no compromise to final device performance. Our code is available open source at //github.com/smhooten/emopt

相關內容

In this work we present deep learning implementations of two popular theoretical constrained optimization algorithms in infinite dimensional Hilbert spaces, namely, the penalty and the augmented Lagrangian methods. We test these algorithms on some toy problems originating in either calculus of variations or physics. We demonstrate that both methods are able to produce decent approximations for the test problems and are comparable in terms of different errors. Leveraging the common occurrence of the Lagrange multiplier update rule being computationally less expensive than solving subproblems in the penalty method, we achieve significant speedups in cases when the output of the constraint function is itself a function.

As a pivotal approach in machine learning and data science, manifold learning aims to uncover the intrinsic low-dimensional structure within complex nonlinear manifolds in high-dimensional space. By exploiting the manifold hypothesis, various techniques for nonlinear dimension reduction have been developed to facilitate visualization, classification, clustering, and gaining key insights. Although existing manifold learning methods have achieved remarkable successes, they still suffer from extensive distortions incurred in the global structure, which hinders the understanding of underlying patterns. Scalability issues also limit their applicability for handling large-scale data. Here, we propose a scalable manifold learning (scML) method that can manipulate large-scale and high-dimensional data in an efficient manner. It starts by seeking a set of landmarks to construct the low-dimensional skeleton of the entire data and then incorporates the non-landmarks into the landmark space based on the constrained locally linear embedding (CLLE). We empirically validated the effectiveness of scML on synthetic datasets and real-world benchmarks of different types, and applied it to analyze the single-cell transcriptomics and detect anomalies in electrocardiogram (ECG) signals. scML scales well with increasing data sizes and exhibits promising performance in preserving the global structure. The experiments demonstrate notable robustness in embedding quality as the sample rate decreases.

We propose a semi-analytic Stokes expansion ansatz for finite-depth standing water waves and devise a recursive algorithm to solve the system of differential equations governing the expansion coefficients. We implement the algorithm on a supercomputer using arbitrary-precision arithmetic. The Stokes expansion introduces hyperbolic trigonometric terms that require exponentiation of power series. We handle this efficiently using Bell polynomials. Under mild assumptions on the fluid depth, we prove that there are no exact resonances, though small divisors may occur. Sudden changes in growth rate in the expansion coefficients are found to correspond to imperfect bifurcations observed when families of standing waves are computed using a shooting method. A direct connection between small divisors in the recursive algorithm and imperfect bifurcations in the solution curves is observed, where the small divisor excites higher-frequency parasitic standing waves that oscillate on top of the main wave. A 109th order Pad\'e approximation maintains 25--30 digits of accuracy on both sides of the first imperfect bifurcation encountered for the unit-depth problem. This suggests that even if the Stokes expansion is divergent, there may be a closely related convergent sequence of rational approximations.

We present a deterministic algorithm for the efficient evaluation of imaginary time diagrams based on the recently introduced discrete Lehmann representation (DLR) of imaginary time Green's functions. In addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties, the DLR basis is separable in imaginary time, allowing us to decompose diagrams into linear combinations of nested sequences of one-dimensional products and convolutions. Focusing on the strong coupling bold-line expansion of generalized Anderson impurity models, we show that our strategy reduces the computational complexity of evaluating an $M$th-order diagram at inverse temperature $\beta$ and spectral width $\omega_{\max}$ from $\mathcal{O}((\beta \omega_{\max})^{2M-1})$ for a direct quadrature to $\mathcal{O}(M (\log (\beta \omega_{\max}))^{M+1})$, with controllable high-order accuracy. We benchmark our algorithm using third-order expansions for multi-band impurity problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling representing a minimal model of Ca$_2$RuO$_4$, demonstrating the promise of the method for modeling realistic strongly correlated multi-band materials. For both strong and weak coupling expansions of low and intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightforward, and robust black-box evaluation procedure. In this sense, it fills a gap between diagrammatic approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on Monte Carlo sampling of high-order diagrams.

The paper considers the convergence of the complex block Jacobi diagonalization methods under the large set of the generalized serial pivot strategies. The global convergence of the block methods for Hermitian, normal and $J$-Hermitian matrices is proven. In order to obtain the convergence results for the block methods that solve other eigenvalue problems, such as the generalized eigenvalue problem, we consider the convergence of a general block iterative process which uses the complex block Jacobi annihilators and operators.

Proper X-ray radiation design (via dynamic fluence field modulation, FFM) allows to reduce effective radiation dose in computed tomography without compromising image quality. It takes into account patient anatomy, radiation sensitivity of different organs and tissues, and location of regions of interest. We account all these factors within a general convex optimization framework.

Bayesian inference for undirected graphical models is mostly restricted to the class of decomposable graphs, as they enjoy a rich set of properties making them amenable to high-dimensional problems. While parameter inference is straightforward in this setup, inferring the underlying graph is a challenge driven by the computational difficulty in exploring the space of decomposable graphs. This work makes two contributions to address this problem. First, we provide sufficient and necessary conditions for when multi-edge perturbations maintain decomposability of the graph. Using these, we characterize a simple class of partitions that efficiently classify all edge perturbations by whether they maintain decomposability. Second, we propose a novel parallel non-reversible Markov chain Monte Carlo sampler for distributions over junction tree representations of the graph. At every step, the parallel sampler executes simultaneously all edge perturbations within a partition. Through simulations, we demonstrate the efficiency of our new edge perturbation conditions and class of partitions. We find that our parallel sampler yields improved mixing properties in comparison to the single-move variate, and outperforms current state-of-the-arts methods in terms of accuracy and computational efficiency. The implementation of our work is available in the Python package parallelDG.

Multiscale stochastic dynamical systems have been widely adopted to a variety of scientific and engineering problems due to their capability of depicting complex phenomena in many real world applications. This work is devoted to investigating the effective dynamics for slow-fast stochastic dynamical systems. Given observation data on a short-term period satisfying some unknown slow-fast stochastic systems, we propose a novel algorithm including a neural network called Auto-SDE to learn invariant slow manifold. Our approach captures the evolutionary nature of a series of time-dependent autoencoder neural networks with the loss constructed from a discretized stochastic differential equation. Our algorithm is also validated to be accurate, stable and effective through numerical experiments under various evaluation metrics.

This study proposes a unified optimization-based planning framework that addresses the precise and efficient navigation of a controlled object within a constrained region, while contending with obstacles. We focus on handling two collision avoidance problems, i.e., the object not colliding with obstacles and not colliding with boundaries of the constrained region. The object or obstacle is denoted as a union of convex polytopes and ellipsoids, and the constrained region is denoted as an intersection of such convex sets. Using these representations, collision avoidance can be approached by formulating explicit constraints that separate two convex sets, or ensure that a convex set is contained in another convex set, referred to as separating constraints and containing constraints, respectively. We propose to use the hyperplane separation theorem to formulate differentiable separating constraints, and utilize the S-procedure and geometrical methods to formulate smooth containing constraints. We state that compared to the state of the art, the proposed formulations allow a considerable reduction in nonlinear program size and geometry-based initialization in auxiliary variables used to formulate collision avoidance constraints. Finally, the efficacy of the proposed unified planning framework is evaluated in two contexts, autonomous parking in tractor-trailer vehicles and overtaking on curved lanes. The results in both cases exhibit an improved computational performance compared to existing methods.

This work focuses on the task of property targeting: that is, generating molecules conditioned on target chemical properties to expedite candidate screening for novel drug and materials development. DiGress is a recent diffusion model for molecular graphs whose distinctive feature is allowing property targeting through classifier-based (CB) guidance. While CB guidance may work to generate molecular-like graphs, we hint at the fact that its assumptions apply poorly to the chemical domain. Based on this insight we propose a classifier-free DiGress (FreeGress), which works by directly injecting the conditioning information into the training process. CF guidance is convenient given its less stringent assumptions and since it does not require to train an auxiliary property regressor, thus halving the number of trainable parameters in the model. We empirically show that our model yields up to 79% improvement in Mean Absolute Error with respect to DiGress on property targeting tasks on QM9 and ZINC-250k benchmarks. As an additional contribution, we propose a simple yet powerful approach to improve chemical validity of generated samples, based on the observation that certain chemical properties such as molecular weight correlate with the number of atoms in molecules.

北京阿比特科技有限公司