亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a new framework to study multi-agent interactions in Markov games: Markov $\alpha$-potential game. A game is called Markov $\alpha$-potential game if there exists a Markov potential game such that the pairwise difference between the change of a player's value function under a unilateral policy deviation in the Markov game and Markov potential game can be bounded by $\alpha$. As a special case, Markov potential games are Markov $\alpha$-potential games with $\alpha=0$. The dependence of $\alpha$ on the game parameters is also explicitly characterized in two classes of games that are practically-relevant: Markov congestion games and the perturbed Markov team games. For general Markov games, an optimization-based approach is introduced which can compute a Markov potential game which is closest to the given game in terms of $\alpha$. This approach can also be used to verify whether a game is a Markov potential game, and provide a candidate potential function. Two algorithms -- the projected gradient-ascent algorithm and the {sequential maximum one-stage improvement} -- are provided to approximate the stationary Nash equilibrium in Markov $\alpha$-potential games and the corresponding Nash-regret analysis is presented. The numerical experiments demonstrate that simple algorithms are capable of finding approximate equilibrium in Markov $\alpha$-potential games.

相關內容

We study a subclass of $n$-player stochastic games, namely, stochastic games with independent chains and unknown transition matrices. In this class of games, players control their own internal Markov chains whose transitions do not depend on the states/actions of other players. However, players' decisions are coupled through their payoff functions. We assume players can receive only realizations of their payoffs, and that the players can not observe the states and actions of other players, nor do they know the transition probability matrices of their own Markov chain. Relying on a compact dual formulation of the game based on occupancy measures and the technique of confidence set to maintain high-probability estimates of the unknown transition matrices, we propose a fully decentralized mirror descent algorithm to learn an $\epsilon$-NE for this class of games. The proposed algorithm has the desired properties of independence, scalability, and convergence. Specifically, under no assumptions on the reward functions, we show the proposed algorithm converges in polynomial time in a weaker distance (namely, the averaged Nikaido-Isoda gap) to the set of $\epsilon$-NE policies with arbitrarily high probability. Moreover, assuming the existence of a variationally stable Nash equilibrium policy, we show that the proposed algorithm converges asymptotically to the stable $\epsilon$-NE policy with arbitrarily high probability. In addition to Markov potential games and linear-quadratic stochastic games, this work provides another subclass of $n$-player stochastic games that, under some mild assumptions, admit polynomial-time learning algorithms for finding their stationary $\epsilon$-NE policies.

We study whether a discrete quantum walk can get arbitrarily close to a state whose entries have the same absolute value over all the arcs, given that the walk starts with a uniform superposition of the outgoing arcs of some vertex. We characterize this phenomenon on non-bipartite graphs using the adjacency spectrum of the graph; in particular, if this happens in some association scheme and the state we get arbitrarily close to ``respects the neighborhood", then it happens regardless of the initial vertex, and the adjacency algebra of the graph contains a real (regular) Hadamard matrix. We then find infinite families of primitive strongly regular graphs that admit this phenomenon. We also derive some results on a strengthening of this phenomenon called simultaneous $\epsilon$-uniform mixing, which enables local $\epsilon$-uniform mixing at every vertex.

Motivated by the advances in deep learning techniques, the application of Unmanned Aerial Vehicle (UAV)-based object detection has proliferated across a range of fields, including vehicle counting, fire detection, and city monitoring. While most existing research studies only a subset of the challenges inherent to UAV-based object detection, there are few studies that balance various aspects to design a practical system for energy consumption reduction. In response, we present the E$^3$-UAV, an edge-based energy-efficient object detection system for UAVs. The system is designed to dynamically support various UAV devices, edge devices, and detection algorithms, with the aim of minimizing energy consumption by deciding the most energy-efficient flight parameters (including flight altitude, flight speed, detection algorithm, and sampling rate) required to fulfill the detection requirements of the task. We first present an effective evaluation metric for actual tasks and construct a transparent energy consumption model based on hundreds of actual flight data to formalize the relationship between energy consumption and flight parameters. Then we present a lightweight energy-efficient priority decision algorithm based on a large quantity of actual flight data to assist the system in deciding flight parameters. Finally, we evaluate the performance of the system, and our experimental results demonstrate that it can significantly decrease energy consumption in real-world scenarios. Additionally, we provide four insights that can assist researchers and engineers in their efforts to study UAV-based object detection further.

We consider the paradigm of unsupervised anomaly detection, which involves the identification of anomalies within a dataset in the absence of labeled examples. Though distance-based methods are top-performing for unsupervised anomaly detection, they suffer heavily from the sensitivity to the choice of the number of the nearest neighbors. In this paper, we propose a new distance-based algorithm called bagged regularized $k$-distances for anomaly detection (BRDAD) converting the unsupervised anomaly detection problem into a convex optimization problem. Our BRDAD algorithm selects the weights by minimizing the surrogate risk, i.e., the finite sample bound of the empirical risk of the bagged weighted $k$-distances for density estimation (BWDDE). This approach enables us to successfully address the sensitivity challenge of the hyperparameter choice in distance-based algorithms. Moreover, when dealing with large-scale datasets, the efficiency issues can be addressed by the incorporated bagging technique in our BRDAD algorithm. On the theoretical side, we establish fast convergence rates of the AUC regret of our algorithm and demonstrate that the bagging technique significantly reduces the computational complexity. On the practical side, we conduct numerical experiments on anomaly detection benchmarks to illustrate the insensitivity of parameter selection of our algorithm compared with other state-of-the-art distance-based methods. Moreover, promising improvements are brought by applying the bagging technique in our algorithm on real-world datasets.

This paper presents a novel vision transformer (ViT) based deep joint source channel coding (DeepJSCC) scheme, dubbed DeepJSCC-l++, which can be adaptive to multiple target bandwidth ratios as well as different channel signal-to-noise ratios (SNRs) using a single model. To achieve this, we train the proposed DeepJSCC-l++ model with different bandwidth ratios and SNRs, which are fed to the model as side information. The reconstruction losses corresponding to different bandwidth ratios are calculated, and a new training methodology is proposed, which dynamically assigns different weights to the losses of different bandwidth ratios according to their individual reconstruction qualities. Shifted window (Swin) transformer, is adopted as the backbone for our DeepJSCC-l++ model. Through extensive simulations it is shown that the proposed DeepJSCC-l++ and successive refinement models can adapt to different bandwidth ratios and channel SNRs with marginal performance loss compared to the separately trained models. We also observe the proposed schemes can outperform the digital baseline, which concatenates the BPG compression with capacity-achieving channel code.

Controllable human motion synthesis is essential for applications in AR/VR, gaming, movies, and embodied AI. Existing methods often focus solely on either language or full trajectory control, lacking precision in synthesizing motions aligned with user-specified trajectories, especially for multi-joint control. To address these issues, we present TLControl, a new method for realistic human motion synthesis, incorporating both low-level trajectory and high-level language semantics controls. Specifically, we first train a VQ-VAE to learn a compact latent motion space organized by body parts. We then propose a Masked Trajectories Transformer to make coarse initial predictions of full trajectories of joints based on the learned latent motion space, with user-specified partial trajectories and text descriptions as conditioning. Finally, we introduce an efficient test-time optimization to refine these coarse predictions for accurate trajectory control. Experiments demonstrate that TLControl outperforms the state-of-the-art in trajectory accuracy and time efficiency, making it practical for interactive and high-quality animation generation.

As Internet censors rapidly evolve new blocking techniques, circumvention tools must also adapt and roll out new strategies to remain unblocked. But new strategies can be time consuming for circumventors to develop and deploy, and usually an update to one tool often requires significant additional effort to be ported to others. Moreover, distributing the updated application across different platforms poses its own set of challenges. In this paper, we introduce $\textit{WATER}$ (WebAssembly Transport Executables Runtime), a novel design that enables applications to use a WebAssembly-based application-layer to wrap network transports (e.g., TLS). Deploying a new circumvention technique with $\textit{WATER}$ only requires distributing the WebAssembly Transport Module(WATM) binary and any transport-specific configuration, allowing dynamic transport updates without any change to the application itself. WATMs are also designed to be generic such that different applications using $\textit{WATER}$ can use the same WATM to rapidly deploy successful circumvention techniques to their own users, facilitating rapid interoperability between independent circumvention tools.

We present ART$\boldsymbol{\cdot}$V, an efficient framework for auto-regressive video generation with diffusion models. Unlike existing methods that generate entire videos in one-shot, ART$\boldsymbol{\cdot}$V generates a single frame at a time, conditioned on the previous ones. The framework offers three distinct advantages. First, it only learns simple continual motions between adjacent frames, therefore avoiding modeling complex long-range motions that require huge training data. Second, it preserves the high-fidelity generation ability of the pre-trained image diffusion models by making only minimal network modifications. Third, it can generate arbitrarily long videos conditioned on a variety of prompts such as text, image or their combinations, making it highly versatile and flexible. To combat the common drifting issue in AR models, we propose masked diffusion model which implicitly learns which information can be drawn from reference images rather than network predictions, in order to reduce the risk of generating inconsistent appearances that cause drifting. Moreover, we further enhance generation coherence by conditioning it on the initial frame, which typically contains minimal noise. This is particularly useful for long video generation. When trained for only two weeks on four GPUs, ART$\boldsymbol{\cdot}$V already can generate videos with natural motions, rich details and a high level of aesthetic quality. Besides, it enables various appealing applications, e.g., composing a long video from multiple text prompts.

We present CoDi-2, a versatile and interactive Multimodal Large Language Model (MLLM) that can follow complex multimodal interleaved instructions, conduct in-context learning (ICL), reason, chat, edit, etc., in an any-to-any input-output modality paradigm. By aligning modalities with language for both encoding and generation, CoDi-2 empowers Large Language Models (LLMs) to not only understand complex modality-interleaved instructions and in-context examples, but also autoregressively generate grounded and coherent multimodal outputs in the continuous feature space. To train CoDi-2, we build a large-scale generation dataset encompassing in-context multimodal instructions across text, vision, and audio. CoDi-2 demonstrates a wide range of zero-shot capabilities for multimodal generation, such as in-context learning, reasoning, and compositionality of any-to-any modality generation through multi-round interactive conversation. CoDi-2 surpasses previous domain-specific models on tasks such as subject-driven image generation, vision transformation, and audio editing. CoDi-2 signifies a substantial breakthrough in developing a comprehensive multimodal foundation model adept at interpreting in-context language-vision-audio interleaved instructions and producing multimodal outputs.

This paper presents an approach to learning (deep) $n$D features equivariant under orthogonal transformations, utilizing hyperspheres and regular $n$-simplexes. Our main contributions are theoretical and tackle major challenges in geometric deep learning such as equivariance and invariance under geometric transformations. Namely, we enrich the recently developed theory of steerable 3D spherical neurons -- SO(3)-equivariant filter banks based on neurons with spherical decision surfaces -- by extending said neurons to $n$D, which we call deep equivariant hyperspheres, and enabling their multi-layer construction. Using synthetic and real-world data in $n$D, we experimentally verify our theoretical contributions and find that our approach is superior to the competing methods for benchmark datasets in all but one case, additionally demonstrating a better speed/performance trade-off in all but one other case.

北京阿比特科技有限公司