亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a framework for estimation and inference when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We construct estimators whose mean squared error is minimax in a neighborhood of the reference model, based on one-step adjustments. In addition, we provide confidence intervals that contain the true parameter under local misspecification. As a tool to interpret the degree of misspecification, we map it to the local power of a specification test of the reference model. Our approach allows for systematic sensitivity analysis when the parameter of interest may be partially or irregularly identified. As illustrations, we study three applications: an empirical analysis of the impact of conditional cash transfers in Mexico where misspecification stems from the presence of stigma effects of the program, a cross-sectional binary choice model where the error distribution is misspecified, and a dynamic panel data binary choice model where the number of time periods is small and the distribution of individual effects is misspecified.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · 估計/估計量 · 正則化項 · 似然 ·
2021 年 12 月 2 日

Item response theory (IRT) is the statistical paradigm underlying a dominant family of generative probabilistic models for test responses, used to quantify traits in individuals relative to target populations. The graded response model (GRM) is a particular IRT model that is used for ordered polytomous test responses. Both the development and the application of the GRM and other IRT models require statistical decisions. For formulating these models (calibration), one needs to decide on methodologies for item selection, inference, and regularization. For applying these models (test scoring), one needs to make similar decisions, often prioritizing computational tractability and/or interpretability. In many applications, such as in the Work Disability Functional Assessment Battery (WD-FAB), tractability implies approximating an individual's score distribution using estimates of mean and variance, and obtaining that score conditional on only point estimates of the calibrated model. In this manuscript, we evaluate the calibration and scoring of models under this common use-case using Bayesian cross-validation. Applied to the WD-FAB responses collected for the National Institutes of Health, we assess the predictive power of implementations of the GRM based on their ability to yield, on validation sets of respondents, ability estimates that are most predictive of patterns of item responses. Our main finding indicates that regularized Bayesian calibration of the GRM outperforms the regularization-free empirical Bayesian procedure of marginal maximum likelihood. We also motivate the use of compactly supported priors in test scoring.

In the analyses of cluster-randomized trials, a standard approach for covariate adjustment and handling within-cluster correlations is the mixed-model analysis of covariance (ANCOVA). The mixed-model ANCOVA makes stringent assumptions, including normality, linearity, and a compound symmetric correlation structure, which may be challenging to verify and may not hold in practice. When mixed-model ANCOVA assumptions are violated, the validity and efficiency of the model-based inference for the average treatment effect are currently unclear. In this article, we prove that the mixed-model ANCOVA estimator for the average treatment effect is consistent and asymptotically normal under arbitrary misspecification of its working model. Under equal randomization, we further show that the model-based variance estimator for the mixed-model ANCOVA estimator remains consistent, clarifying that the confidence interval given by standard software is asymptotically valid even under model misspecification. Beyond robustness, we also provide a caveat that covariate adjustment via mixed-model ANCOVA may lead to precision loss compared to no adjustment when the covariance structure is misspecified, and describe when a cluster-level ANCOVA becomes more efficient. These results hold under both simple and stratified randomization, and are further illustrated via simulations as well as analyses of three cluster-randomized trials.

The generalized g-formula can be used to estimate the probability of survival under a sustained treatment strategy. When treatment strategies are deterministic, estimators derived from the so-called efficient influence function (EIF) for the g-formula will be doubly robust to model misspecification. In recent years, several practical applications have motivated estimation of the g-formula under non-deterministic treatment strategies where treatment assignment at each time point depends on the observed treatment process. In this case, EIF-based estimators may or may not be doubly robust. In this paper, we provide sufficient conditions to ensure existence of doubly robust estimators for intervention treatment distributions that depend on the observed treatment process for point treatment interventions, and give a class of intervention treatment distributions dependent on the observed treatment process that guarantee model doubly and multiply robust estimators in longitudinal settings. Motivated by an application to pre-exposure prophylaxis (PrEP) initiation studies, we propose a new treatment intervention dependent on the observed treatment process. We show there exist 1) estimators that are doubly and multiply robust to model misspecification, and 2) estimators that when used with machine learning algorithms can attain fast convergence rates for our proposed intervention. Theoretical results are confirmed via simulation studies.

In this paper, we propose a general subgroup analysis framework based on semiparametric additive mixed effect models in longitudinal analysis, which can identify subgroups on each covariate and estimate the corresponding regression functions simultaneously. In addition, the proposed procedure is applicable for both balanced and unbalanced longitudinal data. A backfitting combined with k-means algorithm is developed to estimate each semiparametric additive component across subgroups and detect subgroup structure on each covariate respectively. The actual number of groups is estimated by minimizing a Bayesian information criteria. The numerical studies demonstrate the efficacy and accuracy of the proposed procedure in identifying the subgroups and estimating the regression functions. In addition, we illustrate the usefulness of our method with an application to PBC data and provide a meaningful partition of the population.

We introduce a new class of estimators for the linear response of steady states of stochastic dynamics. We generalize the likelihood ratio approach and formulate the linear response as a product of two martingales, hence the name "martingale product estimators". We present a systematic derivation of the martingale product estimator, and show how to construct such estimator so its bias is consistent with the weak order of the numerical scheme that approximates the underlying stochastic differential equation. Motivated by the estimation of transport properties in molecular systems, we present a rigorous numerical analysis of the bias and variance for these new estimators in the case of Langevin dynamics. We prove that the variance is uniformly bounded in time and derive a specific form of the estimator for second-order splitting schemes for Langevin dynamics. For comparison, we also study the bias and variance of a Green-Kubo estimator, motivated, in part, by its variance growing linearly in time. Presented analysis shows that the new martingale product estimators, having uniformly bounded variance in time, offer a competitive alternative to the traditional Green-Kubo estimator. We compare on illustrative numerical tests the new estimators with results obtained by the Green-Kubo method.

Quality of Life (QOL) outcomes are important in the management of chronic illnesses. In studies of efficacies of treatments or intervention modalities, QOL scales multi-dimensional constructs are routinely used as primary endpoints. The standard data analysis strategy computes composite (average) overall and domain scores, and conducts a mixed-model analysis for evaluating efficacy or monitoring medical conditions as if these scores were in continuous metric scale. However, assumptions of parametric models like continuity and homoscedastivity can be violated in many cases. Furthermore, it is even more challenging when there are missing values on some of the variables. In this paper, we propose a purely nonparametric approach in the sense that meaningful and, yet, nonparametric effect size measures are developed. We propose estimator for the effect size and develop the asymptotic properties. Our methods are shown to be particularly effective in the presence of some form of clustering and/or missing values. Inferential procedures are derived from the asymptotic theory. The Asthma Randomized Trial of Indoor Wood Smoke data will be used to illustrate the applications of the proposed methods. The data was collected from a three-arm randomized trial which evaluated interventions targeting biomass smoke particulate matter from older model residential wood stoves in homes that have children with asthma.

To further develop the statistical inference problem for heterogeneous treatment effects, this paper builds on Breiman's (2001) random forest tree (RFT)and Wager et al.'s (2018) causal tree to parameterize the nonparametric problem using the excellent statistical properties of classical OLS and the division of local linear intervals based on covariate quantile points, while preserving the random forest trees with the advantages of constructible confidence intervals and asymptotic normality properties [Athey and Imbens (2016),Efron (2014),Wager et al.(2014)\citep{wager2014asymptotic}], we propose a decision tree using quantile classification according to fixed rules combined with polynomial estimation of local samples, which we call the quantile local linear causal tree (QLPRT) and forest (QLPRF).

Semiparametric inference about average causal effects from observational data is based on assumptions yielding identification of the effects. In practice, several distinct identifying assumptions may be plausible; an analyst has to make a delicate choice between these models. In this paper, we study three identifying assumptions based on the potential outcome framework: the back-door assumption, which uses pre-treatment covariates, the front-door assumption, which uses mediators, and the two-door assumption using pre-treatment covariates and mediators simultaneously. We derive the efficient influence functions and the corresponding semiparametric efficiency bounds that hold under these assumptions, and their combinations. We compare the bounds and give conditions under which some bounds are lower than others. We also propose semiparametric estimators, quantify their efficiency and study their robustness to misspecification of the nuisance models. The theory is complemented with simulation experiments on the finite sample behavior of the estimators. The results obtained are relevant for an analyst facing a choice between several plausible identifying assumptions and corresponding estimators. Here, the choice is a trade-off between efficiency and robustness to misspecification of the nuisance models.

Data from both a randomized trial and an observational study are sometimes simultaneously available for evaluating the effect of an intervention. The randomized data typically allows for reliable estimation of average treatment effects but may be limited in sample size and patient heterogeneity for estimating conditional average treatment effects for a broad range of patients. Estimates from the observational study can potentially compensate for these limitations, but there may be concerns about whether confounding and treatment effect heterogeneity have been adequately addressed. We propose an approach for combining conditional treatment effect estimators from each source such that it aggressively weights toward the randomized estimator when bias in the observational estimator is detected. This allows the combination to be consistent for a conditional causal effect, regardless of whether assumptions required for consistent estimation in the observational study are satisfied. When the bias is negligible, the estimators from each source are combined for optimal efficiency. We show the problem can be formulated as a penalized least squares problem and consider its asymptotic properties. Simulations demonstrate the robustness and efficiency of the method in finite samples, in scenarios with bias or no bias in the observational estimator. We illustrate the method by estimating the effects of hormone replacement therapy on the risk of developing coronary heart disease in data from the Women's Health Initiative.

We study the problem of causal structure learning with no assumptions on the functional relationships and noise. We develop DAG-FOCI, a computationally fast algorithm for this setting that is based on the FOCI variable selection algorithm in \cite{azadkia2019simple}. DAG-FOCI requires no tuning parameter and outputs the parents and the Markov boundary of a response variable of interest. We provide high-dimensional guarantees of our procedure when the underlying graph is a polytree. Furthermore, we demonstrate the applicability of DAG-FOCI on real data from computational biology \cite{sachs2005causal} and illustrate the robustness of our methods to violations of assumptions.

北京阿比特科技有限公司