亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In epidemiological and clinical studies, identifying patients' phenotypes based on longitudinal profiles is critical to understanding the disease's developmental patterns. The current study was motivated by data from a Canadian birth cohort study, the CHILD Cohort Study. Our goal was to use multiple longitudinal respiratory traits to cluster the participants into subgroups with similar longitudinal respiratory profiles in order to identify clinically relevant disease phenotypes. To appropriately account for distinct structures and types of these longitudinal markers, we proposed a novel joint model for clustering mixed-type (continuous, discrete and categorical) multivariate longitudinal data. We also developed a Markov Chain Monte Carlo algorithm to estimate the posterior distribution of model parameters. Analysis of the CHILD Cohort data and simulated data were presented and discussed. Our study demonstrated that the proposed model serves as a useful analytical tool for clustering multivariate mixed-type longitudinal data. We developed an R package BCClong to implement the proposed model efficiently.

相關內容

In recent years, ML researchers have wrestled with defining and improving machine learning (ML) benchmarks and datasets. In parallel, some have trained a critical lens on the ethics of dataset creation and ML research. In this position paper, we highlight the entanglement of ethics with seemingly ``technical'' or ``scientific'' decisions about the design of ML benchmarks. Our starting point is the existence of multiple overlooked structural similarities between human intelligence benchmarks and ML benchmarks. Both types of benchmarks set standards for describing, evaluating, and comparing performance on tasks relevant to intelligence -- standards that many scholars of human intelligence have long recognized as value-laden. We use perspectives from feminist philosophy of science on IQ benchmarks and thick concepts in social science to argue that values need to be considered and documented when creating ML benchmarks. It is neither possible nor desirable to avoid this choice by creating value-neutral benchmarks. Finally, we outline practical recommendations for ML benchmark research ethics and ethics review.

We introduce a Bayesian framework for mixed-type multivariate regression using shrinkage priors. Our method enables joint analysis of mixed continuous and discrete outcomes and facilitates variable selection where the number of covariates $p$ may be larger than sample size $n$. Our model can be implemented with a Gibbs sampling algorithm where all conditional distributions are tractable, leading to a simple one-step estimation procedure. We derive the posterior contraction rate for the one-step estimator when $p$ grows subexponentially with respect to $n$. We further establish that subexponential growth is both a necessary and a sufficient condition for the one-step estimator to achieve posterior consistency. We then introduce a two-step variable selection approach that is suitable for large $p$. We prove that our two-step algorithm possesses the sure screening property. Moreover, our two-step estimator can provably achieve posterior contraction even when $p$ grows exponentially in $n$, thus overcoming a limitation of the one-step estimator. Numerical experiments and analyses of real datasets demonstrate the ability of our joint modeling approach to improve predictive accuracy and identify significant variables in multivariate mixed response models. R codes to implement our method are available at //github.com/raybai07/MtMBSP.

Rutting of asphalt pavements is a crucial design criterion in various pavement design guides. A good road transportation base can provide security for the transportation of oil and gas in road transportation. This study attempts to develop a robust artificial intelligence model to estimate different asphalt pavements' rutting depth clips, temperature, and load axes as primary characteristics. The experiment data were obtained from 19 asphalt pavements with different crude oil sources on a 2.038 km long full-scale field accelerated pavement test track (RIOHTrack, Road Track Institute) in Tongzhou, Beijing. In addition, this paper also proposes to build complex networks with different pavement rutting depths through complex network methods and the Louvain algorithm for community detection. The most critical structural elements can be selected from different asphalt pavement rutting data, and similar structural elements can be found. An extreme learning machine algorithm with residual correction (RELM) is designed and optimized using an independent adaptive particle swarm algorithm. The experimental results of the proposed method are compared with several classical machine learning algorithms, with predictions of Average Root Mean Squared Error, Average Mean Absolute Error, and Average Mean Absolute Percentage Error for 19 asphalt pavements reaching 1.742, 1.363, and 1.94\% respectively. The experiments demonstrate that the RELM algorithm has an advantage over classical machine learning methods in dealing with non-linear problems in road engineering. Notably, the method ensures the adaptation of the simulated environment to different levels of abstraction through the cognitive analysis of the production environment parameters.

Pandas is defined as a software library which is used for data analysis in Python programming language. As pandas is a fast, easy and open source data analysis tool, it is rapidly used in different software engineering projects like software development, machine learning, computer vision, natural language processing, robotics, and others. So a huge interests are shown in software developers regarding pandas and a huge number of discussions are now becoming dominant in online developer forums, like Stack Overflow (SO). Such discussions can help to understand the popularity of pandas library and also can help to understand the importance, prevalence, difficulties of pandas topics. The main aim of this research paper is to find the popularity and difficulty of pandas topics. For this regard, SO posts are collected which are related to pandas topic discussions. Topic modeling are done on the textual contents of the posts. We found 26 topics which we further categorized into 5 board categories. We observed that developers discuss variety of pandas topics in SO related to error and excepting handling, visualization, External support, dataframe, and optimization. In addition, a trend chart is generated according to the discussion of topics in a predefined time series. The finding of this paper can provide a path to help the developers, educators and learners. For example, beginner developers can learn most important topics in pandas which are essential for develop any model. Educators can understand the topics which seem hard to learners and can build different tutorials which can make that pandas topic understandable. From this empirical study it is possible to understand the preferences of developers in pandas topic by processing their SO posts

We propose a Bayesian model selection approach that allows medical practitioners to select among predictor variables while taking their respective costs into account. Medical procedures almost always incur costs in time and/or money. These costs might exceed their usefulness for modeling the outcome of interest. We develop Bayesian model selection that uses flexible model priors to penalize costly predictors a priori and select a subset of predictors useful relative to their costs. Our approach (i) gives the practitioner control over the magnitude of cost penalization, (ii) enables the prior to scale well with sample size, and (iii) enables the creation of our proposed inclusion path visualization, which can be used to make decisions about individual candidate predictors using both probabilistic and visual tools. We demonstrate the effectiveness of our inclusion path approach and the importance of being able to adjust the magnitude of the prior's cost penalization through a dataset pertaining to heart disease diagnosis in patients at the Cleveland Clinic Foundation, where several candidate predictors with various costs were recorded for patients, and through simulated data.

Many networks in political and social research are bipartite, with edges connecting exclusively across two distinct types of nodes. A common example includes cosponsorship networks, in which legislators are connected indirectly through the bills they support. Yet most existing network models are designed for unipartite networks, where edges can arise between any pair of nodes. We show that using a unipartite network model to analyze bipartite networks, as often done in practice, can result in aggregation bias. To address this methodological problem, we develop a statistical model of bipartite networks by extending the popular mixed-membership stochastic blockmodel. Our model allows researchers to identify the groups of nodes, within each node type, that share common patterns of edge formation. The model also incorporates both node and dyad-level covariates as the predictors of the edge formation patterns. We develop an efficient computational algorithm for fitting the model, and apply it to cosponsorship data from the United States Senate. We show that senators tapped into communities defined by party lines and seniority when forming cosponsorships on bills, while the pattern of cosponsorships depends on the timing and substance of legislations. We also find evidence for norms of reciprocity, and uncover the substantial role played by policy expertise in the formation of cosponsorships between senators and legislation. An open-source software package is available for implementing the proposed methodology.

Task-oriented communications, mostly using learning-based joint source-channel coding (JSCC), aim to design a communication-efficient edge inference system by transmitting task-relevant information to the receiver. However, only transmitting task-relevant information without introducing any redundancy may cause robustness issues in learning due to the channel variations, and the JSCC which directly maps the source data into continuous channel input symbols poses compatibility issues on existing digital communication systems. In this paper, we address these two issues by first investigating the inherent tradeoff between the informativeness of the encoded representations and the robustness to information distortion in the received representations, and then propose a task-oriented communication scheme with digital modulation, named discrete task-oriented JSCC (DT-JSCC), where the transmitter encodes the features into a discrete representation and transmits it to the receiver with the digital modulation scheme. In the DT-JSCC scheme, we develop a robust encoding framework, named robust information bottleneck (RIB), to improve the communication robustness to the channel variations, and derive a tractable variational upper bound of the RIB objective function using the variational approximation to overcome the computational intractability of mutual information. The experimental results demonstrate that the proposed DT-JSCC achieves better inference performance than the baseline methods with low communication latency, and exhibits robustness to channel variations due to the applied RIB framework.

Motivated by the connections between collaborative filtering and network clustering, we consider a network-based approach to improving rating prediction in recommender systems. We propose a novel Bipartite Mixed-Membership Stochastic Block Model ($\mathrm{BM}^2$) with a conjugate prior from the exponential family. We derive the analytical expression of the model and introduce a variational Bayesian expectation-maximization algorithm, which is computationally feasible for approximating the untractable posterior distribution. We carry out extensive simulations to show that $\mathrm{BM}^2$ provides more accurate inference than standard SBM with the emergence of outliers. Finally, we apply the proposed model to a MovieLens dataset and find that it outperforms other competing methods for collaborative filtering.

In longitudinal studies, it is not uncommon to make multiple attempts to collect a measurement after baseline. Recording whether these attempts are successful provides useful information for the purposes of assessing missing data assumptions. This is because measurements from subjects who provide the data after numerous failed attempts may differ from those who provide the measurement after fewer attempts. Previous models for these designs were parametric and/or did not allow sensitivity analysis. For the former, there are always concerns about model misspecification and for the latter, sensitivity analysis is essential when conducting inference in the presence of missing data. Here, we propose a new approach which minimizes issues with model misspecification by using Bayesian nonparametrics for the observed data distribution. We also introduce a novel approach for identification and sensitivity analysis. We re-analyze the repeated attempts data from a clinical trial involving patients with severe mental illness and conduct simulations to better understand the properties of our approach.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

北京阿比特科技有限公司