This paper presents two new augmented flexible (AF)-Krylov subspace methods, AF-GMRES and AF-LSQR, to compute solutions of large-scale linear discrete ill-posed problems that can be modeled as the sum of two independent random variables, exhibiting smooth and sparse stochastic characteristics respectively. Following a Bayesian modelling approach, this corresponds to adding a covariance-weighted quadratic term and a sparsity enforcing $\ell_1$ term in the original least-squares minimization scheme. To handle the $\ell_1$ regularization term, the proposed approach constructs a sequence approximating quadratic problems that are partially solved using augmented flexible Krylov-Tikhonov methods. Compared to other traditional methods used to solve this minimization problem, such as those based on iteratively reweighted norm schemes, the new algorithms build a single (augmented, flexible) approximation (Krylov) subspace that encodes information about the different regularization terms through adaptable "preconditioning". The solution space is then expanded as soon as a new problem within the sequence is defined. This also allows for the regularization parameters to be chosen on-the-fly at each iteration. Compared to most recent work on generalized flexible Krylov methods, our methods offer theoretical assurance of convergence and a more stable numerical performance. The efficiency of the new methods is shown through a variety of experiments, including a synthetic image deblurring problem, a synthetic atmospheric transport problem, and fluorescence molecular tomography reconstructions using both synthetic and real-world experimental data.
We resurrect the infamous harmonic mean estimator for computing the marginal likelihood (Bayesian evidence) and solve its problematic large variance. The marginal likelihood is a key component of Bayesian model selection to evaluate model posterior probabilities; however, its computation is challenging. The original harmonic mean estimator, first proposed by Newton and Raftery in 1994, involves computing the harmonic mean of the likelihood given samples from the posterior. It was immediately realised that the original estimator can fail catastrophically since its variance can become very large (possibly not finite). A number of variants of the harmonic mean estimator have been proposed to address this issue although none have proven fully satisfactory. We present the \emph{learnt harmonic mean estimator}, a variant of the original estimator that solves its large variance problem. This is achieved by interpreting the harmonic mean estimator as importance sampling and introducing a new target distribution. The new target distribution is learned to approximate the optimal but inaccessible target, while minimising the variance of the resulting estimator. Since the estimator requires samples of the posterior only, it is agnostic to the sampling strategy used. We validate the estimator on a variety of numerical experiments, including a number of pathological examples where the original harmonic mean estimator fails catastrophically. We also consider a cosmological application, where our approach leads to $\sim$ 3 to 6 times more samples than current state-of-the-art techniques in 1/3 of the time. In all cases our learnt harmonic mean estimator is shown to be highly accurate. The estimator is computationally scalable and can be applied to problems of dimension $O(10^3)$ and beyond. Code implementing the learnt harmonic mean estimator is made publicly available
Refinement calculus provides a structured framework for the progressive and modular development of programs, ensuring their correctness throughout the refinement process. This paper introduces a refinement calculus tailored for quantum programs. To this end, we first study the partial correctness of nondeterministic programs within a quantum while language featuring prescription statements. Orthogonal projectors, which are equivalent to subspaces of the state Hilbert space, are taken as assertions for quantum states. In addition to the denotational semantics where a nondeterministic program is associated with a set of trace-nonincreasing super-operators, we also present their semantics in transforming a postcondition to the weakest liberal postconditions and, conversely, transforming a precondition to the strongest postconditions. Subsequently, refinement rules are introduced based on these dual semantics, offering a systematic approach to the incremental development of quantum programs applicable in various contexts. To illustrate the practical application of the refinement calculus, we examine examples such as the implementation of a $Z$-rotation gate, the repetition code, and the quantum-to-quantum Bernoulli factory. Furthermore, we present Quire, a Python-based interactive prototype tool that provides practical support to programmers engaged in the stepwise development of correct quantum programs.
We introduce numerical solvers for the steady-state Boltzmann equation based on the symmetric Gauss-Seidel (SGS) method. Due to the quadratic collision operator in the Boltzmann equation, the SGS method requires solving a nonlinear system on each grid cell, and we consider two methods, namely Newton's method and the fixed-point iteration, in our numerical tests. For small Knudsen numbers, our method has an efficiency between the classical source iteration and the modern generalized synthetic iterative scheme, and the complexity of its implementation is closer to the source iteration. A variety of numerical tests are carried out to demonstrate its performance, and it is concluded that the proposed method is suitable for applications with moderate to large Knudsen numbers.
We propose and compare methods for the analysis of extreme events in complex systems governed by PDEs that involve random parameters, in situations where we are interested in quantifying the probability that a scalar function of the system's solution is above a threshold. If the threshold is large, this probability is small and its accurate estimation is challenging. To tackle this difficulty, we blend theoretical results from large deviation theory (LDT) with numerical tools from PDE-constrained optimization. Our methods first compute parameters that minimize the LDT-rate function over the set of parameters leading to extreme events, using adjoint methods to compute the gradient of this rate function. The minimizers give information about the mechanism of the extreme events as well as estimates of their probability. We then propose a series of methods to refine these estimates, either via importance sampling or geometric approximation of the extreme event sets. Results are formulated for general parameter distributions and detailed expressions are provided when Gaussian distributions. We give theoretical and numerical arguments showing that the performance of our methods is insensitive to the extremeness of the events we are interested in. We illustrate the application of our approach to quantify the probability of extreme tsunami events on shore. Tsunamis are typically caused by a sudden, unpredictable change of the ocean floor elevation during an earthquake. We model this change as a random process, which takes into account the underlying physics. We use the one-dimensional shallow water equation to model tsunamis numerically. In the context of this example, we present a comparison of our methods for extreme event probability estimation, and find which type of ocean floor elevation change leads to the largest tsunamis on shore.
Numerical methods for computing the solutions of Markov backward stochastic differential equations (BSDEs) driven by continuous-time Markov chains (CTMCs) are explored. The main contributions of this paper are as follows: (1) we observe that Euler-Maruyama temporal discretization methods for solving Markov BSDEs driven by CTMCs are equivalent to exponential integrators for solving the associated systems of ordinary differential equations (ODEs); (2) we introduce multi-stage Euler-Maruyama methods for effectively solving "stiff" Markov BSDEs driven by CTMCs; these BSDEs typically arise from the spatial discretization of Markov BSDEs driven by Brownian motion; (3) we propose a multilevel spatial discretization method on sparse grids that efficiently approximates high-dimensional Markov BSDEs driven by Brownian motion with a combination of multiple Markov BSDEs driven by CTMCs on grids with different resolutions. We also illustrate the effectiveness of the presented methods with a number of numerical experiments in which we treat nonlinear BSDEs arising from option pricing problems in finance.
This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.
This article proposes a highly accurate and conservative method for hyperbolic systems using the finite volume approach. This innovative scheme constructs the intermediate states at the interfaces of the control volumes using the method of characteristics. The approach is simple to implement, generates entropic solutions, and avoids solving Riemann problems. A diffusion control parameter is introduced to increase the accuracy of the scheme. Numerical examples are presented for the Euler equation for an ideal gas. The results demonstrate the method's ability to capture contact discontinuity and shock wave profiles with high accuracy and low cost as well as its robustness.
We present the numerical analysis of a finite element method (FEM) for one-dimensional Dirichlet problems involving the logarithmic Laplacian (the pseudo-differential operator that appears as a first-order expansion of the fractional Laplacian as the exponent $s\to 0^+$). Our analysis exhibits new phenomena in this setting; in particular, using recently obtained regularity results, we prove rigorous error estimates and provide a logarithmic order of convergence in the energy norm using suitable \emph{log}-weighted spaces. Numerical evidence suggests that this type of rate cannot be improved. Moreover, we show that the stiffness matrix of logarithmic problems can be obtained as the derivative of the fractional stiffness matrix evaluated at $s=0$. Lastly, we investigate the relationship between the discrete eigenvalue problem and its convergence to the continuous one.
We propose Diffusion Model Variational Inference (DMVI), a novel method for automated approximate inference in probabilistic programming languages (PPLs). DMVI utilizes diffusion models as variational approximations to the true posterior distribution by deriving a novel bound to the marginal likelihood objective used in Bayesian modelling. DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model. We evaluate DMVI on a set of common Bayesian models and show that its posterior inferences are in general more accurate than those of contemporary methods used in PPLs while having a similar computational cost and requiring less manual tuning.
This paper modifies a n-dimensional Hopf-Cole transformation to the n-dimensional Burgers' system. We obtain the n-dimensional heat conduction equation through the modification of the Hopf-Cole transformation. Then the fourth-order precise integration method (PIM) in combination with a spatially global sixth-order compact finite difference (CFD) scheme is presented to solve the equation with high accuracy. Moreover, coupling with the Strang splitting method, the scheme is extended to multi-dimensional (two, three-dimensional) Burgers' system. Numerical results show that the proposed method appreciably improves the computational accuracy compared with the existing numerical method.Moreover, the two-dimensional and three-dimensional examples demonstrate excellent adaptability, and the numerical simulation results also have very high accuracy in medium Reynolds numbers.