This paper delineates the formulation and verification of an innovative robotic forearm and elbow design, mirroring the intricate biomechanics of human skeletal and ligament systems. Conventional robotic models often undervalue the substantial function of soft tissues, leading to a compromise between compactness, safety, stability, and range of motion. In contrast, this study proposes a holistic replication of biological joints, encompassing bones, cartilage, ligaments, and tendons, culminating in a biomimetic robot. The research underscores the compact and stable structure of the human forearm, attributable to a tri-bone framework and diverse soft tissues. The methodology involves exhaustive examinations of human anatomy, succeeded by a theoretical exploration of the contribution of soft tissues to the stability of the prototype. The evaluation results unveil remarkable parallels between the range of motion of the robotic joints and their human counterparts. The robotic elbow emulates 98.8% of the biological elbow's range of motion, with high torque capacities of 11.25 Nm (extension) and 24 Nm (flexion). Similarly, the robotic forearm achieves 58.6% of the human forearm's rotational range, generating substantial output torques of 14 Nm (pronation) and 7.8 Nm (supination). Moreover, the prototype exhibits significant load-bearing abilities, resisting a 5kg dumbbell load without substantial displacement. It demonstrates a payload capacity exceeding 4kg and rapid action capabilities, such as lifting a 2kg dumbbell at a speed of 0.74Hz and striking a ping-pong ball at an end-effector speed of 3.2 m/s. This research underscores that a detailed anatomical study can address existing robotic design obstacles, optimize performance and anthropomorphic resemblance, and reaffirm traditional anatomical principles.
In research of manufacturing systems and autonomous robots, the term capability is used for a machine-interpretable specification of a system function. Approaches in this research area develop information models that capture all information relevant to interpret the requirements, effects and behavior of functions. These approaches are intended to overcome the heterogeneity resulting from the various types of processes and from the large number of different vendors. However, these models and associated methods do not offer solutions for automated process planning, i.e. finding a sequence of individual capabilities required to manufacture a certain product or to accomplish a mission using autonomous robots. Instead, this is a typical task for AI planning approaches, which unfortunately require a high effort to create the respective planning problem descriptions. In this paper, we present an approach that combines these two topics: Starting from a semantic capability model, an AI planning problem is automatically generated. The planning problem is encoded using Satisfiability Modulo Theories and uses an existing solver to find valid capability sequences including required parameter values. The approach also offers possibilities to integrate existing human expertise and to provide explanations for human operators in order to help understand planning decisions.
Electrically-driven soft robots based on piezoelectric actuators may enable compact form factors and maneuverability in complex environments. In most prior work, piezoelectric actuators are used to control a single degree of freedom. In this work, the coordinated activation of five independent piezoelectric actuators, attached to a common metal foil, is used to implement inchworm-inspired crawling motion in a robot that is less than 0.5 mm thick. The motion is based on the control of its friction to the ground through the robot's shape, in which one end of the robot (depending on its shape) is anchored to the ground by static friction, while the rest of its body expands or contracts. A complete analytical model of the robot shape, which includes gravity, is developed to quantify the robot shape, friction, and displacement. After validation of the model by experiments, the robot's five actuators are collectively sequenced for inchworm-like forward and backward motion.
This paper presents a novel solution to address the challenges in achieving energy efficiency and cooperation for collision avoidance in UAV swarms. The proposed method combines Artificial Potential Field (APF) and Particle Swarm Optimization (PSO) techniques. APF provides environmental awareness and implicit coordination to UAVs, while PSO searches for collision-free and energy-efficient trajectories for each UAV in a decentralized manner under the implicit coordination. This decentralized approach is achieved by minimizing a novel cost function that leverages the advantages of the active contour model from image processing. Additionally, future trajectories are predicted by approximating the minima of the novel cost function using calculus of variation, which enables proactive actions and defines the initial conditions for PSO. We propose a two-branch trajectory planning framework that ensures UAVs only change altitudes when necessary for energy considerations. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method in various situations.
This study reports the impact of examining either with digital or paper-based tests in science subjects taught across the second-ary level. With our method, we compare the percentile ranking scores of two cohorts earned in computer- and paper-based teacher-made assessments to find signals of a testing mode effect. It was found that overall, at cohort and gender levels, pupils were rank-ordered equivalently in both testing modes. Furthermore, females and top-achieving pupils were the two subgroups where the differences between modes were smaller. The practical implications of these findings are discussed from the lens of a case study and the doubt about whether regular schools could afford to deliver high-stakes computer-based tests.
This paper presents a large-scale analysis of the cryptocurrency community on Reddit, shedding light on the intricate relationship between the evolution of their activity, emotional dynamics, and price movements. We analyze over 130M posts on 122 cryptocurrency-related subreddits using temporal analysis, statistical modeling, and emotion detection. While /r/CryptoCurrency and /r/dogecoin are the most active subreddits, we find an overall surge in cryptocurrency-related activity in 2021, followed by a sharp decline. We also uncover a strong relationship in terms of cross-correlation between online activity and the price of various coins, with the changes in the number of posts mostly leading the price changes. Backtesting analysis shows that a straightforward strategy based on the cross-correlation where one buys/sells a coin if the daily number of posts about it is greater/less than the previous would have led to a 3x return on investment. Finally, we shed light on the emotional dynamics of the cryptocurrency communities, finding that joy becomes a prominent indicator during upward market performance, while a decline in the market manifests an increase in anger.
Analysis of pipe networks involves computing flow rates and pressure differences on pipe segments in the network, given the external inflow/outflow values. This analysis can be conducted using iterative methods, among which the algorithms of Hardy Cross and Newton-Raphson have historically been applied in practice. In this note, we address the mathematical analysis of the local convergence of these algorithms. The loop-based Newton-Raphson algorithm converges quadratically fast, and we provide estimates for its convergence radius to correct some estimates in the previous literature. In contrast, we show that the convergence of the Hardy Cross algorithm is only linear. This provides theoretical confirmation of experimental observations reported earlier in the literature.
High-level synthesis (HLS) tools have provided significant productivity enhancements to the design flow of digital systems in recent years, resulting in highly-optimized circuits, in terms of area and latency. Given the evolution of hardware attacks, which can render them vulnerable, it is essential to consider security as a significant aspect of the HLS design flow. Yet the need to evaluate a huge number of functionally equivalent de-signs of the HLS design space challenges hardware security evaluation methods (e.g., fault injection - FI campaigns). In this work, we propose an evaluation methodology of hardware security properties of HLS-produced designs using state-of-the-art Graph Neural Network (GNN) approaches that achieves significant speedup and better scalability than typical evaluation methods (such as FI). We demonstrate the proposed methodology on a Double Modular Redundancy (DMR) coun-termeasure applied on an AES SBox implementation, en-hanced by diversifying the redundant modules through HLS directives. The experimental results show that GNNs can be efficiently trained to predict important hardware security met-rics concerning fault attacks (e.g., critical and detection error rates), by using regression. The proposed method predicts the fault vulnerability metrics of the HLS-based designs with high R-squared scores and achieves huge speedup compared to fault injection once the training of the GNN is completed.
This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions