亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Programming a robot manipulator should be as intuitive as possible. To achieve that, the paradigm of teaching motion skills by providing few demonstrations has become widely popular in recent years. Probabilistic versions thereof take into account the uncertainty given by the distribution of the training data. However, precise execution of start-, via-, and end-poses at given times can not always be guaranteed. This limits the technology transfer to industrial application. To address this problem, we propose a novel constrained formulation of the Expectation Maximization algorithm for learning Gaussian Mixture Models (GMM) on Riemannian Manifolds. Our approach applies to probabilistic imitation learning and extends also to the well-established TP-GMM framework with Task-Parameterization. It allows to prescribe end-effector poses at defined execution times, for instance for precise pick & place scenarios. The probabilistic approach is compared with state-of-the-art learning-from-demonstration methods using the KUKA LBR iiwa robot. The reader is encouraged to watch the accompanying video available at //youtu.be/JMI1YxtN9C0

相關內容

Large pretrained language models are widely used in downstream NLP tasks via task-specific fine-tuning, but such procedures can be costly. Recently, Parameter-Efficient Fine-Tuning (PEFT) methods have achieved strong task performance while updating much fewer parameters than full model fine-tuning (FFT). However, it is non-trivial to make informed design choices on the PEFT configurations, such as their architecture, the number of tunable parameters, and even the layers in which the PEFT modules are inserted. Consequently, it is highly likely that the current, manually designed configurations are suboptimal in terms of their performance-efficiency trade-off. Inspired by advances in neural architecture search, we propose AutoPEFT for automatic PEFT configuration selection: we first design an expressive configuration search space with multiple representative PEFT modules as building blocks. Using multi-objective Bayesian optimisation in a low-cost setup, we then discover a Pareto-optimal set of configurations with strong performance-cost trade-offs across different numbers of parameters that are also highly transferable across different tasks. Empirically, on GLUE and SuperGLUE tasks, we show that AutoPEFT-discovered configurations significantly outperform existing PEFT methods and are on par or better than FFT without incurring substantial training efficiency costs.

Remaining useful life prediction plays a crucial role in the health management of industrial systems. Given the increasing complexity of systems, data-driven predictive models have attracted significant research interest. Upon reviewing the existing literature, it appears that many studies either do not fully integrate both spatial and temporal features or employ only a single attention mechanism. Furthermore, there seems to be inconsistency in the choice of data normalization methods, particularly concerning operating conditions, which might influence predictive performance. To bridge these observations, this study presents the Spatio-Temporal Attention Graph Neural Network. Our model combines graph neural networks and temporal convolutional neural networks for spatial and temporal feature extraction, respectively. The cascade of these extractors, combined with multi-head attention mechanisms for both spatio-temporal dimensions, aims to improve predictive precision and refine model explainability. Comprehensive experiments were conducted on the C-MAPSS dataset to evaluate the impact of unified versus clustering normalization. The findings suggest that our model performs state-of-the-art results using only the unified normalization. Additionally, when dealing with datasets with multiple operating conditions, cluster normalization enhances the performance of our proposed model by up to 27%.

Large Language Models (LLMs) perform well on basic programming problems. However, they encounter challenges when dealing with complex tasks involving the use of diverse algorithmic and data structure skills, particularly programming competition-level problems. Notably, ChatGPT exhibits proficient performance on problems it has encountered during its pre-training phase, but this performance deteriorates when faced with novel problems. Consequently, enhancing the ability of LLMs to address unfamiliar problems has emerged as a pivotal research focus. The problem-solving process of LLMs mirrors human programmers' approach to a certain extent. When confronted with new programming tasks, human programmers engage in task planning and code writing with the previously acquired knowledge about algorithms and data structures. Despite having learned such knowledge, LLMs struggle to effectively apply it when faced with specific new problems. To address this issue, we constructed a novel dataset, CodeF, which contains a portion of programming problems that ChatGPT has not previously encountered. Furthermore, we developed a Knowledge Library tailored for Python programming contest problems and introduced the concept of Knowledge-Aware Code Generation (KareCoder). KareCoder bolsters the models' understanding and problem-solving capabilities by integrating prompt and knowledge from the library into the LLMs' code generation reasoning process, especially on Pass@1 metrics. Upon testing on the CodeF and APPS datasets, KareCoder demonstrated outstanding performance in handling novel problems previously unencountered by LLMs. In contrast with the code directly generated by ChatGPT, KareCoder achieved a relative improvement of 23.3% on the Pass@1 metric on the CodeF post2021-9 dataset. Additionally, it performs well compared to other methods when dealing with problems that LLMs have previously encountered.

Linear Recurrence has proven to be a powerful tool for modeling long sequences efficiently. In this work, we show that existing models fail to take full advantage of its potential. Motivated by this finding, we develop GateLoop, a foundational sequence model that generalizes linear recurrent models such as S4, S5, LRU and RetNet, by employing data-controlled state transitions. Utilizing this theoretical advance, GateLoop empirically outperforms existing models for auto-regressive language modeling. Our method comes with a low-cost $O(l)$ recurrent mode and an efficient $O(l \log_{2} l)$ parallel mode making use of highly optimized associative scan implementations. Furthermore, we derive an $O(l^2)$ surrogate attention mode, revealing remarkable implications for Transformer and recently proposed architectures. Specifically, we prove that our approach can be interpreted as providing data-controlled relative-positional information to Attention. While many existing models solely rely on data-controlled cumulative sums for context aggregation, our findings suggest that incorporating data-controlled complex cumulative products may be a crucial step towards more powerful sequence models.

We present Flow-Guided Density Ratio Learning (FDRL), a simple and scalable approach to generative modeling which builds on the stale (time-independent) approximation of the gradient flow of entropy-regularized f-divergences introduced in DGflow. In DGflow, the intractable time-dependent density ratio is approximated by a stale estimator given by a GAN discriminator. This is sufficient in the case of sample refinement, where the source and target distributions of the flow are close to each other. However, this assumption is invalid for generation and a naive application of the stale estimator fails due to the large chasm between the two distributions. FDRL proposes to train a density ratio estimator such that it learns from progressively improving samples during the training process. We show that this simple method alleviates the density chasm problem, allowing FDRL to generate images of dimensions as high as $128\times128$, as well as outperform existing gradient flow baselines on quantitative benchmarks. We also show the flexibility of FDRL with two use cases. First, unconditional FDRL can be easily composed with external classifiers to perform class-conditional generation. Second, FDRL can be directly applied to unpaired image-to-image translation with no modifications needed to the framework. Code is publicly available at //github.com/ajrheng/FDRL.

We describe a class of tasks called decision-oriented dialogues, in which AI assistants must collaborate with one or more humans via natural language to help them make complex decisions. We formalize three domains in which users face everyday decisions: (1) choosing an assignment of reviewers to conference papers, (2) planning a multi-step itinerary in a city, and (3) negotiating travel plans for a group of friends. In each of these settings, AI assistants and users have disparate abilities that they must combine to arrive at the best decision: assistants can access and process large amounts of information, while users have preferences and constraints external to the system. For each task, we build a dialogue environment where agents receive a reward based on the quality of the final decision they reach. Using these environments, we collect human-human dialogues with humans playing the role of assistant. To compare how current AI assistants communicate in these settings, we present baselines using large language models in self-play. Finally, we highlight a number of challenges models face in decision-oriented dialogues, ranging from efficient communication to reasoning and optimization, and release our environments as a testbed for future modeling work.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

北京阿比特科技有限公司