亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, an intelligent reflecting surface (IRS)-and-unmanned aerial vehicle (UAV)-assisted two-way amplify-and-forward (AF) relay network in maritime Internet of Things (IoT) is proposed, where ship1 (S1) and ship2 (S2) can be viewed as data collecting centers. To enhance the message exchange rate between S1 and S2, a problem of maximizing minimum rate is cast, where the variables, namely AF relay beamforming matrix and IRS phase shifts of two time slots, need to be optimized. To achieve a maximum rate, a low-complexity alternately iterative (AI) scheme based on zero forcing and successive convex approximation (LC-ZF-SCA) algorithm is presented. To obtain a significant rate enhancement, a high-performance AI method based on one step, semidefinite programming and penalty SCA (ONS-SDP-PSCA) is proposed. Simulation results present the rate of the IRS-and-UAV-assisted AF relay network via the proposed LC-ZF-SCA and ONS-SDP-PSCA methods surpass those of with random phase and only AF relay.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國(guo)際網絡會(hui)議。 Publisher:IFIP。 SIT:

This paper provides a novel parsimonious yet efficient design for zero-shot learning (ZSL), dubbed ParsNets, where we are interested in learning a composition of on-device friendly linear networks, each with orthogonality and low-rankness properties, to achieve equivalent or even better performance against existing deep models. Concretely, we first refactor the core module of ZSL, i.e., visual-semantics mapping function, into several base linear networks that correspond to diverse components of the semantic space, where the complex nonlinearity can be collapsed into simple local linearities. Then, to facilitate the generalization of local linearities, we construct a maximal margin geometry on the learned features by enforcing low-rank constraints on intra-class samples and high-rank constraints on inter-class samples, resulting in orthogonal subspaces for different classes and each subspace lies on a compact manifold. To enhance the model's adaptability and counterbalance over/under-fittings in ZSL, a set of sample-wise indicators is employed to select a sparse subset from these base linear networks to form a composite semantic predictor for each sample. Notably, maximal margin geometry can guarantee the diversity of features, and meanwhile, local linearities guarantee efficiency. Thus, our ParsNets can generalize better to unseen classes and can be deployed flexibly on resource-constrained devices. Theoretical explanations and extensive experiments are conducted to verify the effectiveness of the proposed method.

This paper considers the problem of evaluating an autonomous system's competency in performing a task, particularly when working in dynamic and uncertain environments. The inherent opacity of machine learning models, from the perspective of the user, often described as a `black box', poses a challenge. To overcome this, we propose using a measure called the Surprise index, which leverages available measurement data to quantify whether the dynamic system performs as expected. We show that the surprise index can be computed in closed form for dynamic systems when observed evidence in a probabilistic model if the joint distribution for that evidence follows a multivariate Gaussian marginal distribution. We then apply it to a nonlinear spacecraft maneuver problem, where actions are chosen by a reinforcement learning agent and show it can indicate how well the trajectory follows the required orbit.

In this paper, a novel artificial intelligence-based cyber-attack detection model for smart grids is developed to stop data integrity cyber-attacks (DIAs) on the received load data by supervisory control and data acquisition (SCADA). In the proposed model, first the load data is forecasted using a regression model and after processing stage, the processed data is clustered using the unsupervised learning method. In this work, in order to achieve the best performance, three load forecasting methods (i.e. extra tree regression (ETR), long short-term memory (LSTM) and bidirectional long short-term memory (BiLSTM)) are utilized as regression models and their performance is compared. For clustering and outlying detection, the covariance elliptic envelope (EE) is employed as an unsupervised learning method. To examine the proposed model, the hourly load data of the power company of the city of Johor in Malaysia is employed and Two common DIAs, which are DIAs targeting economic loss and DIAs targeting blackouts, are used to evaluate the accuracy of detection methods in several scenarios. The simulation results show that the proposed EE-BiLSTM method can perform more robust and accurate compared to the other two methods.

In this paper, we investigate a novel reconfigurable distributed antennas and reflecting surface (RDARS) aided multi-user massive MIMO system with imperfect CSI and propose a practical two-timescale (TTS) transceiver design to reduce the communication overhead and computational complexity of the system. In the RDARS-aided system, not only distribution gain but also reflection gain can be obtained by a flexible combination of the distributed antennas and reflecting surface, which differentiates the system from the others and also makes the TTS design challenging. To enable the optimal TTS transceiver design, the achievable rate of the system is first derived in closed-form. Then the TTS design aiming at the weighted sum rate maximization is considered. To solve the challenging non-convex optimization problem with high-order design variables, i.e., the transmit powers and the phase shifts at the RDARS, a block coordinate descent based method is proposed to find the optimal solutions in semi-closed forms iteratively. Specifically, two efficient algorithms are proposed with provable convergence for the optimal phase shift design, i.e., Riemannian Gradient Ascent based algorithm by exploiting the unit-modulus constraints, and Two-Tier Majorization-Minimization based algorithm with closed-form optimal solutions in each iteration. Simulation results validate the effectiveness of the proposed algorithm and demonstrate the superiority of deploying RDARS in massive MIMO systems to provide substantial rate improvement with a significantly reduced total number of active antennas/RF chains and lower transmit power when compared to the DAS and RIS-aided systems.

This paper presents a novel conflict resolution strategy for autonomous surface vehicles (ASVs) to safely navigate and avoid collisions in a multi-vessel environment at sea. Collisions between two or more marine vessels must be avoided by following the International Regulations for Preventing Collisions at Sea (COLREGs). We propose strategy a two-phase strategy called as COLREGs Compliant Conflict-Resolving (COMCORE) strategy, that generates collision-free trajectories for ASVs while complying with COLREGs. In phase-1, a shortest path for each agent is determined, while in phase-2 conflicts are detected and resolved by modifying the path in compliance with COLREGs. COMCORE solution optimises vessel trajectories for lower costs while also providing a safe and collision-free plan for each vessel. Simulation results are presented to show the applicability of COMCORE for larger number agents with very low computational requirement and hence scalable. Further, we experimentally demonstrate COMCORE for two ASVs in a lake to show its ability to determine solution and implementation capability in the real-world.

In this paper, we study a multi-user visible light communication (VLC) system assisted with optical reflecting intelligent surface (ORIS). Joint precoding and alignment matrices are designed to maximize the average signal-to-interference plus noise ratio (SINR) criteria. Considering the constraints of the constant mean transmission power of LEDs and the power associated with all users, an optimization problem is proposed. To solve this problem, we utilize an alternating optimization algorithm to optimize the precoding and alignment matrices. The simulation results demonstrate that the resultant SINR of the proposed method outperforms ZF and MMSE precoding algorithms.

Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running time. For the vertex cover problem, there is a gap between theory and practice when it comes to understanding this tradeoff. On the one hand, it is known that it is NP-hard to approximate a minimum vertex cover within a factor of $\sqrt{2}$. On the other hand, a simple greedy algorithm yields close to optimal approximations in practice. A promising approach towards understanding this discrepancy is to recognize the differences between theoretical worst-case instances and real-world networks. Following this direction, we close the gap between theory and practice by providing an algorithm that efficiently computes nearly optimal vertex cover approximations on hyperbolic random graphs; a network model that closely resembles real-world networks in terms of degree distribution, clustering, and the small-world property. More precisely, our algorithm computes a $(1 + o(1))$-approximation, asymptotically almost surely, and has a running time of $\mathcal{O}(m \log(n))$. The proposed algorithm is an adaptation of the successful greedy approach, enhanced with a procedure that improves on parts of the graph where greedy is not optimal. This makes it possible to introduce a parameter that can be used to tune the tradeoff between approximation performance and running time. Our empirical evaluation on real-world networks shows that this allows for improving over the near-optimal results of the greedy approach.

Cooperative perception is crucial for connected automated vehicles in intelligent transportation systems (ITSs); however, ensuring the authenticity of perception data remains a challenge as the vehicles cannot verify events that they do not witness independently. Various studies have been conducted on establishing the authenticity of data, such as trust-based statistical methods and plausibility-based methods. However, these methods are limited as they require prior knowledge such as previous sender behaviors or predefined rules to evaluate the authenticity. To overcome this limitation, this study proposes a novel approach called zero-knowledge Proof of Traffic (zk-PoT), which involves generating cryptographic proofs to the traffic observations. Multiple independent proofs regarding the same vehicle can be deterministically cross-verified by any receivers without relying on ground truth, probabilistic, or plausibility evaluations. Additionally, no private information is compromised during the entire procedure. A full on-board unit software stack that reflects the behavior of zk-PoT is implemented within a specifically designed simulator called Flowsim. A comprehensive experimental analysis is then conducted using synthesized city-scale simulations, which demonstrates that zk-PoT's cross-verification ratio ranges between 80 % to 96 %, and 80 % of the verification is achieved in 2 s, with a protocol overhead of approximately 25 %. Furthermore, the analyses of various attacks indicate that most of the attacks could be prevented, and some, such as collusion attacks, can be mitigated. The proposed approach can be incorporated into existing works, including the European Telecommunications Standards Institute (ETSI) and the International Organization for Standardization (ISO) ITS standards, without disrupting the backward compatibility.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司