Immortal time is a period of follow-up during which death or the study outcome cannot occur by design. Bias from immortal time has been increasingly recognized in epidemiologic studies. However, it remains unclear how immortal time arises and what the structures of bias from immortal time are. Here, we use an example "Do Nobel Prize winners live longer than less recognized scientists?" to illustrate that immortal time arises from using postbaseline information to define exposure or eligibility. We use time-varying directed acyclic graphs (DAGs) to present the structures of bias from immortal time as the key sources of bias, that is confounding and selection bias. We explain that excluding immortal time from the follow-up does not fully address the bias, and that the presence of competing risks can worsen the bias. We also discuss how the structures of bias from immortal time are shared by different study designs in pharmacoepidemiology and provide solutions, where possible, to address the bias.
Data generation remains a bottleneck in training surrogate models to predict molecular properties. We demonstrate that multitask Gaussian process regression overcomes this limitation by leveraging both expensive and cheap data sources. In particular, we consider training sets constructed from coupled-cluster (CC) and density function theory (DFT) data. We report that multitask surrogates can predict at CC level accuracy with a reduction to data generation cost by over an order of magnitude. Of note, our approach allows the training set to include DFT data generated by a heterogeneous mix of exchange-correlation functionals without imposing any artificial hierarchy on functional accuracy. More generally, the multitask framework can accommodate a wider range of training set structures -- including full disparity between the different levels of fidelity -- than existing kernel approaches based on $\Delta$-learning, though we show that the accuracy of the two approaches can be similar. Consequently, multitask regression can be a tool for reducing data generation costs even further by opportunistically exploiting existing data sources.
We consider the problem of estimating the marginal independence structure of a Bayesian network from observational data, learning an undirected graph we call the unconditional dependence graph. We show that unconditional dependence graphs of Bayesian networks correspond to the graphs having equal independence and intersection numbers. Using this observation, a Gr\"obner basis for a toric ideal associated to unconditional dependence graphs of Bayesian networks is given and then extended by additional binomial relations to connect the space of all such graphs. An MCMC method, called GrUES (Gr\"obner-based Unconditional Equivalence Search), is implemented based on the resulting moves and applied to synthetic Gaussian data. GrUES recovers the true marginal independence structure via a penalized maximum likelihood or MAP estimate at a higher rate than simple independence tests while also yielding an estimate of the posterior, for which the $20\%$ HPD credible sets include the true structure at a high rate for data-generating graphs with density at least $0.5$.
Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work we present a higher-order GNN model trained to predict the fourth-order stiffness tensor of periodic strut-based lattices. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate the benefits of the encoded equivariance and energy conservation in terms of predictive performance and reduced training requirements.
We consider the dynamics of an elastic continuum under large deformation but small strain. Such systems can be described by the equations of geometrically nonlinear elastodynamics in combination with the St. Venant-Kirchhoff material law. The velocity-stress formulation of the problem turns out to have a formal port-Hamiltonian structure. In contrast to the linear case, the operators of the problem are modulated by the displacement field which can be handled as a passive variable and integrated along with the velocities. A weak formulation of the problem is derived and essential boundary conditions are incorporated via Lagrange multipliers. This variational formulation explicitly encodes the transfer between kinetic and potential energy in the interior as well as across the boundary, thus leading to a global power balance and ensuring passivity of the system. The particular geometric structure of the weak formulation can be preserved under Galerkin approximation via appropriate mixed finite elements. In addition, a fully discrete power balance can be obtained by appropriate time discretization. The main properties of the system and its discretization are shown theoretically and demonstrated by numerical tests.
We propose a novel algorithm for the support estimation of partially known Gaussian graphical models that incorporates prior information about the underlying graph. In contrast to classical approaches that provide a point estimate based on a maximum likelihood or a maximum a posteriori criterion using (simple) priors on the precision matrix, we consider a prior on the graph and rely on annealed Langevin diffusion to generate samples from the posterior distribution. Since the Langevin sampler requires access to the score function of the underlying graph prior, we use graph neural networks to effectively estimate the score from a graph dataset (either available beforehand or generated from a known distribution). Numerical experiments demonstrate the benefits of our approach.
Logistic regression is a ubiquitous method for probabilistic classification. However, the effectiveness of logistic regression depends upon careful and relatively computationally expensive tuning, especially for the regularisation hyperparameter, and especially in the context of high-dimensional data. We present a prevalidated ridge regression model that closely matches logistic regression in terms of classification error and log-loss, particularly for high-dimensional data, while being significantly more computationally efficient and having effectively no hyperparameters beyond regularisation. We scale the coefficients of the model so as to minimise log-loss for a set of prevalidated predictions derived from the estimated leave-one-out cross-validation error. This exploits quantities already computed in the course of fitting the ridge regression model in order to find the scaling parameter with nominal additional computational expense.
Tracking ripening tomatoes is time consuming and labor intensive. Artificial intelligence technologies combined with those of computer vision can help users optimize the process of monitoring the ripening status of plants. To this end, we have proposed a tomato ripening monitoring approach based on deep learning in complex scenes. The objective is to detect mature tomatoes and harvest them in a timely manner. The proposed approach is declined in two parts. Firstly, the images of the scene are transmitted to the pre-processing layer. This process allows the detection of areas of interest (area of the image containing tomatoes). Then, these images are used as input to the maturity detection layer. This layer, based on a deep neural network learning algorithm, classifies the tomato thumbnails provided to it in one of the following five categories: green, brittle, pink, pale red, mature red. The experiments are based on images collected from the internet gathered through searches using tomato state across diverse languages including English, German, French, and Spanish. The experimental results of the maturity detection layer on a dataset composed of images of tomatoes taken under the extreme conditions, gave a good classification rate.
In this paper we consider a dynamic Erd\H{o}s-R\'enyi graph in which edges, according to an alternating renewal process, change from present to absent and vice versa. The objective is to estimate the on- and off-time distributions while only observing the aggregate number of edges. This inverse problem is dealt with, in a parametric context, by setting up an estimator based on the method of moments. We provide conditions under which the estimator is asymptotically normal, and we point out how the corresponding covariance matrix can be identified. It is also demonstrated how to adapt the estimation procedure if alternative subgraph counts are observed, such as the number of wedges or triangles.
Classical shadows (CS) offer a resource-efficient means to estimate quantum observables, circumventing the need for exhaustive state tomography. Here, we clarify and explore the connection between CS techniques and least squares (LS) and regularized least squares (RLS) methods commonly used in machine learning and data analysis. By formal identification of LS and RLS "shadows" completely analogous to those in CS -- namely, point estimators calculated from the empirical frequencies of single measurements -- we show that both RLS and CS can be viewed as regularizers for the underdetermined regime, replacing the pseudoinverse with invertible alternatives. Through numerical simulations, we evaluate RLS and CS from three distinct angles: the tradeoff in bias and variance, mismatch between the expected and actual measurement distributions, and the interplay between the number of measurements and number of shots per measurement. Compared to CS, RLS attains lower variance at the expense of bias, is robust to distribution mismatch, and is more sensitive to the number of shots for a fixed number of state copies -- differences that can be understood from the distinct approaches taken to regularization. Conceptually, our integration of LS, RLS, and CS under a unifying "shadow" umbrella aids in advancing the overall picture of CS techniques, while practically our results highlight the tradeoffs intrinsic to these measurement approaches, illuminating the circumstances under which either RLS or CS would be preferred, such as unverified randomness for the former or unbiased estimation for the latter.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.