亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we consider the inverse problem of electrical conductivity retrieval starting from boundary measurements, in the framework of Electrical Resistance Tomography (ERT). In particular, the focus is on non-iterative reconstruction algorithms, compatible with real-time applications. In this work a new non-iterative reconstruction method for Electrical Resistance Tomography, termed Kernel Method, is presented. The imaging algorithm deals with the problem of retrieving the shape of one or more anomalies embedded in a known background. The foundation of the proposed method is given by the idea that if there exists a current flux at the boundary (Neumann data) able to produce the same voltage measurements on two different configurations, with and without the anomaly, respectively, then the corresponding electric current density for the problem involving only the background material vanishes in the region occupied by the anomaly. Coherently with this observation, the Kernel Method consists in (i) evaluating a proper current flux at the boundary $g$, (ii) solving one direct problem on a configuration without anomaly and driven by $g$, (iii) reconstructing the anomaly from the spatial plot of the power density as the region in which the power density vanishes. This new tomographic method has a very simple numerical implementation at a very low computational cost. Beside theoretical results and justifications of our method, we present a large number of numerical examples to show the potential of this new algorithm.

相關內容

In past work (Onokpasa, Wild, Wong, DCC 2023), we showed that (a) for joint compression of RNA sequence and structure, stochastic context-free grammars are the best known compressors and (b) that grammars which have better compression ability also show better performance in ab initio structure prediction. Previous grammars were manually curated by human experts. In this work, we develop a framework for automatic and systematic search algorithms for stochastic grammars with better compression (and prediction) ability for RNA. We perform an exhaustive search of small grammars and identify grammars that surpass the performance of human-expert grammars.

This paper discusses the development of synthetic cohomology in Homotopy Type Theory (HoTT), as well as its computer formalisation. The objectives of this paper are (1) to generalise previous work on integral cohomology in HoTT by the current authors and Brunerie (2022) to cohomology with arbitrary coefficients and (2) to provide the mathematical details of, as well as extend, results underpinning the computer formalisation of cohomology rings by the current authors and Lamiaux (2023). With respect to objective (1), we provide new direct definitions of the cohomology group operations and of the cup product, which, just as in (Brunerie et al., 2022), enable significant simplifications of many earlier proofs in synthetic cohomology theory. In particular, the new definition of the cup product allows us to give the first complete formalisation of the axioms needed to turn the cohomology groups into a graded commutative ring. We also establish that this cohomology theory satisfies the HoTT formulation of the Eilenberg-Steenrod axioms for cohomology and study the classical Mayer-Vietoris and Gysin sequences. With respect to objective (2), we characterise the cohomology groups and rings of various spaces, including the spheres, torus, Klein bottle, real/complex projective planes, and infinite real projective space. All results have been formalised in Cubical Agda and we obtain multiple new numbers, similar to the famous `Brunerie number', which can be used as benchmarks for computational implementations of HoTT. Some of these numbers are infeasible to compute in Cubical Agda and hence provide new computational challenges and open problems which are much easier to define than the original Brunerie number.

This paper introduces a novel approach that seeks a middle ground for traffic control in multi-lane congestion, where prevailing traffic speeds are too fast, and speed recommendations designed to dampen traffic waves are too slow. Advanced controllers that modify the speed of an automated car for wave-dampening, eco-driving, or other goals, typically are designed with forward collision safety in mind. Our approach goes further, by considering how dangerous it can be for a controller to drive so slowly relative to prevailing traffic that it creates a significant issue for safety and comfort. This paper explores open-road scenarios where large gaps between prevailing speeds and desired speeds can exist, specifically when infrastructure-based variable speed limit systems are not strictly followed at all times by other drivers. Our designed, implemented, and deployed algorithm is able to follow variable speed limits when others also follow it, avoid collisions with vehicles ahead, and adapt to prevailing traffic when other motorists are traveling well above the posted speeds. The key is to reject unsafe speed recommendations from infrastructure-based traffic smoothing systems, based on real-time local traffic conditions observed by the vehicle under control. This solution is implemented and deployed on two control vehicles in heavy multi-lane highway congestion. The results include analysis from system design, and field tests that validate the system's performance using an existing Variable Speed Limit system as the external source for speed recommendations, and the on-board sensors of a stock Toyota Rav4 for inputs that estimate the prevailing speed of traffic around the vehicle under control.

We present a generalizable novel view synthesis method which enables modifying the visual appearance of an observed scene so rendered views match a target weather or lighting condition without any scene specific training or access to reference views at the target condition. Our method is based on a pretrained generalizable transformer architecture and is fine-tuned on synthetically generated scenes under different appearance conditions. This allows for rendering novel views in a consistent manner for 3D scenes that were not included in the training set, along with the ability to (i) modify their appearance to match the target condition and (ii) smoothly interpolate between different conditions. Experiments on real and synthetic scenes show that our method is able to generate 3D consistent renderings while making realistic appearance changes, including qualitative and quantitative comparisons. Please refer to our project page for video results: //ava-nvs.github.io/

In this survey, we present in a unified way the categorical and syntactical settings of coherent differentiation introduced recently, which shows that the basic ideas of differential linear logic and of the differential lambda-calculus are compatible with determinism. Indeed, due to the Leibniz rule of the differential calculus, differential linear logic and the differential lambda-calculus feature an operation of addition of proofs or terms operationally interpreted as a strong form of nondeterminism. The main idea of coherent differentiation is that these sums can be controlled and kept in the realm of determinism by means of a notion of summability, upon enforcing summability restrictions on the derivatives which can be written in the models and in the syntax.

This book is the result of a seminar in which we reviewed multimodal approaches and attempted to create a solid overview of the field, starting with the current state-of-the-art approaches in the two subfields of Deep Learning individually. Further, modeling frameworks are discussed where one modality is transformed into the other, as well as models in which one modality is utilized to enhance representation learning for the other. To conclude the second part, architectures with a focus on handling both modalities simultaneously are introduced. Finally, we also cover other modalities as well as general-purpose multi-modal models, which are able to handle different tasks on different modalities within one unified architecture. One interesting application (Generative Art) eventually caps off this booklet.

This paper serves as a survey of recent advances in large margin training and its theoretical foundations, mostly for (nonlinear) deep neural networks (DNNs) that are probably the most prominent machine learning models for large-scale data in the community over the past decade. We generalize the formulation of classification margins from classical research to latest DNNs, summarize theoretical connections between the margin, network generalization, and robustness, and introduce recent efforts in enlarging the margins for DNNs comprehensively. Since the viewpoint of different methods is discrepant, we categorize them into groups for ease of comparison and discussion in the paper. Hopefully, our discussions and overview inspire new research work in the community that aim to improve the performance of DNNs, and we also point to directions where the large margin principle can be verified to provide theoretical evidence why certain regularizations for DNNs function well in practice. We managed to shorten the paper such that the crucial spirit of large margin learning and related methods are better emphasized.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司