亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Variance reduction for causal inference in the presence of network interference is often achieved through either outcome modeling, which is typically analyzed under unit-randomized Bernoulli designs, or clustered experimental designs, which are typically analyzed without strong parametric assumptions. In this work, we study the intersection of these two approaches and consider the problem of estimation in low-order outcome models using data from a general experimental design. Our contributions are threefold. First, we present an estimator of the total treatment effect (also called the global average treatment effect) in a low-degree outcome model when the data are collected under general experimental designs, generalizing previous results for Bernoulli designs. We refer to this estimator as the pseudoinverse estimator and give bounds on its bias and variance in terms of properties of the experimental design. Second, we evaluate these bounds for the case of cluster randomized designs with both Bernoulli and complete randomization. For clustered Bernoulli randomization, we find that our estimator is always unbiased and that its variance scales like the smaller of the variance obtained from a low-order assumption and the variance obtained from cluster randomization, showing that combining these variance reduction strategies is preferable to using either individually. For clustered complete randomization, we find a notable bias-variance trade-off mediated by specific features of the clustering. Third, when choosing a clustered experimental design, our bounds can be used to select a clustering from a set of candidate clusterings. Across a range of graphs and clustering algorithms, we show that our method consistently selects clusterings that perform well on a range of response models, suggesting that our bounds are useful to practitioners.

相關內容

Quantum neural networks (QNNs) use parameterized quantum circuits with data-dependent inputs and generate outputs through the evaluation of expectation values. Calculating these expectation values necessitates repeated circuit evaluations, thus introducing fundamental finite-sampling noise even on error-free quantum computers. We reduce this noise by introducing the variance regularization, a technique for reducing the variance of the expectation value during the quantum model training. This technique requires no additional circuit evaluations if the QNN is properly constructed. Our empirical findings demonstrate the reduced variance speeds up the training and lowers the output noise as well as decreases the number of necessary evaluations of gradient circuits. This regularization method is benchmarked on the regression of multiple functions and the potential energy surface of water. We show that in our examples, it lowers the variance by an order of magnitude on average and leads to a significantly reduced noise level of the QNN. We finally demonstrate QNN training on a real quantum device and evaluate the impact of error mitigation. Here, the optimization is feasible only due to the reduced number of necessary shots in the gradient evaluation resulting from the reduced variance.

Stress and material deformation field predictions are among the most important tasks in computational mechanics. These predictions are typically made by solving the governing equations of continuum mechanics using finite element analysis, which can become computationally prohibitive considering complex microstructures and material behaviors. Machine learning (ML) methods offer potentially cost effective surrogates for these applications. However, existing ML surrogates are either limited to low-dimensional problems and/or do not provide uncertainty estimates in the predictions. This work proposes an ML surrogate framework for stress field prediction and uncertainty quantification for diverse materials microstructures. A modified Bayesian U-net architecture is employed to provide a data-driven image-to-image mapping from initial microstructure to stress field with prediction (epistemic) uncertainty estimates. The Bayesian posterior distributions for the U-net parameters are estimated using three state-of-the-art inference algorithms: the posterior sampling-based Hamiltonian Monte Carlo method and two variational approaches, the Monte-Carlo Dropout method and the Bayes by Backprop algorithm. A systematic comparison of the predictive accuracy and uncertainty estimates for these methods is performed for a fiber reinforced composite material and polycrystalline microstructure application. It is shown that the proposed methods yield predictions of high accuracy compared to the FEA solution, while uncertainty estimates depend on the inference approach. Generally, the Hamiltonian Monte Carlo and Bayes by Backprop methods provide consistent uncertainty estimates. Uncertainty estimates from Monte Carlo Dropout, on the other hand, are more difficult to interpret and depend strongly on the method's design.

Cellular scale decision making is modulated by the dynamics of signalling molecules and their diffusive trajectories from a source to small absorbing sites on the cellular surface. Diffusive capture problems are computationally challenging due to the complex geometry and the applied boundary conditions together with intrinsically long transients that occur before a particle is captured. This paper reports on a particle-based Kinetic Monte Carlo (KMC) method that provides rapid accurate simulation of arrival statistics for (i) a half-space bounded by a surface with a finite collection of absorbing traps and (ii) the domain exterior to a convex cell again with absorbing traps. We validate our method by replicating classical results and in addition, newly developed boundary homogenization theories and matched asymptotic expansions on capture rates. In the case of non-spherical domains, we describe a new shielding effect in which geometry can play a role in sharpening cellular estimates on the directionality of diffusive sources.

Making inference with spatial extremal dependence models can be computationally burdensome since they involve intractable and/or censored likelihoods. Building on recent advances in likelihood-free inference with neural Bayes estimators, that is, neural networks that approximate Bayes estimators, we develop highly efficient estimators for censored peaks-over-threshold models that {use data augmentation techniques} to encode censoring information in the neural network {input}. Our new method provides a paradigm shift that challenges traditional censored likelihood-based inference methods for spatial extremal dependence models. Our simulation studies highlight significant gains in both computational and statistical efficiency, relative to competing likelihood-based approaches, when applying our novel estimators to make inference with popular extremal dependence models, such as max-stable, $r$-Pareto, and random scale mixture process models. We also illustrate that it is possible to train a single neural Bayes estimator for a general censoring level, precluding the need to retrain the network when the censoring level is changed. We illustrate the efficacy of our estimators by making fast inference on hundreds-of-thousands of high-dimensional spatial extremal dependence models to assess extreme particulate matter 2.5 microns or less in diameter (${\rm PM}_{2.5}$) concentration over the whole of Saudi Arabia.

Gesture is an important mean of non-verbal communication, with visual modality allows human to convey information during interaction, facilitating peoples and human-machine interactions. However, it is considered difficult to automatically recognise gestures. In this work, we explore three different means to recognise hand signs using deep learning: supervised learning based methods, self-supervised methods and visualisation based techniques applied to 3D moving skeleton data. Self-supervised learning used to train fully connected, CNN and LSTM method. Then, reconstruction method is applied to unlabelled data in simulated settings using CNN as a backbone where we use the learnt features to perform the prediction in the remaining labelled data. Lastly, Grad-CAM is applied to discover the focus of the models. Our experiments results show that supervised learning method is capable to recognise gesture accurately, with self-supervised learning increasing the accuracy in simulated settings. Finally, Grad-CAM visualisation shows that indeed the models focus on relevant skeleton joints on the associated gesture.

Assessing the capabilities of large multimodal models (LMMs) often requires the creation of ad-hoc evaluations. Currently, building new benchmarks requires tremendous amounts of manual work for each specific analysis. This makes the evaluation process tedious and costly. In this paper, we present APEx, Automatic Programming of Experiments, the first framework for automatic benchmarking of LMMs. Given a research question expressed in natural language, APEx leverages a large language model (LLM) and a library of pre-specified tools to generate a set of experiments for the model at hand, and progressively compile a scientific report. The report drives the testing procedure: based on the current status of the investigation, APEx chooses which experiments to perform and whether the results are sufficient to draw conclusions. Finally, the LLM refines the report, presenting the results to the user in natural language. Thanks to its modularity, our framework is flexible and extensible as new tools become available. Empirically, APEx reproduces the findings of existing studies while allowing for arbitrary analyses and hypothesis testing.

PEPit is a Python package aiming at simplifying the access to worst-case analyses of a large family of first-order optimization methods possibly involving gradient, projection, proximal, or linear optimization oracles, along with their approximate, or Bregman variants. In short, PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods. The key underlying idea is to cast the problem of performing a worst-case analysis, often referred to as a performance estimation problem (PEP), as a semidefinite program (SDP) which can be solved numerically. To do that, the package users are only required to write first-order methods nearly as they would have implemented them. The package then takes care of the SDP modeling parts, and the worst-case analysis is performed numerically via a standard solver.

Recently, addressing spatial confounding has become a major topic in spatial statistics. However, the literature has provided conflicting definitions, and many proposed definitions do not address the issue of confounding as it is understood in causal inference. We define spatial confounding as the existence of an unmeasured causal confounder with a spatial structure. We present a causal inference framework for nonparametric identification of the causal effect of a continuous exposure on an outcome in the presence of spatial confounding. We propose double machine learning (DML), a procedure in which flexible models are used to regress both the exposure and outcome variables on confounders to arrive at a causal estimator with favorable robustness properties and convergence rates, and we prove that this approach is consistent and asymptotically normal under spatial dependence. As far as we are aware, this is the first approach to spatial confounding that does not rely on restrictive parametric assumptions (such as linearity, effect homogeneity, or Gaussianity) for both identification and estimation. We demonstrate the advantages of the DML approach analytically and in simulations. We apply our methods and reasoning to a study of the effect of fine particulate matter exposure during pregnancy on birthweight in California.

The problem of computing an exact experimental design that is optimal for the least-squares estimation of the parameters of a regression model is considered. We show that this problem can be solved via mixed-integer linear programming (MILP) for a wide class of optimality criteria, including the criteria of A-, I-, G- and MV-optimality. This approach improves upon the current state-of-the-art mathematical programming formulation, which uses mixed-integer second-order cone programming. The key idea underlying the MILP formulation is McCormick relaxation, which critically depends on finite interval bounds for the elements of the covariance matrix of the least-squares estimator corresponding to an optimal exact design. We provide both analytic and algorithmic methods for constructing these bounds. We also demonstrate the unique advantages of the MILP approach, such as the possibility of incorporating multiple design constraints into the optimization problem, including constraints on the variances and covariances of the least-squares estimator.

A novel and fully distributed optimization method is proposed for the distributed robust convex program (DRCP) over a time-varying unbalanced directed network under the uniformly jointly strongly connected (UJSC) assumption. Firstly, a tractable approximated DRCP (ADRCP) is introduced by discretizing the semi-infinite constraints into a finite number of inequality constraints and restricting the right-hand side of the constraints with a positive parameter. This problem is iteratively solved by a distributed projected gradient algorithm proposed in this paper, which is based on epigraphic reformulation and subgradient projected algorithms. Secondly, a cutting-surface consensus approach is proposed for locating an approximately optimal consensus solution of the DRCP with guaranteed feasibility. This approach is based on iteratively approximating the DRCP by successively reducing the restriction parameter of the right-hand constraints and populating the cutting-surfaces into the existing finite set of constraints. Thirdly, to ensure finite-time termination of the distributed optimization, a distributed termination algorithm is developed based on consensus and zeroth-order stopping conditions under UJSC graphs. Fourthly, it is proved that the cutting-surface consensus approach terminates finitely and yields a feasible and approximate optimal solution for each agent. Finally, the effectiveness of the approach is illustrated through a numerical example.

北京阿比特科技有限公司