The postulates of quantum mechanics impose only unitary transformations on quantum states, which is a severe limitation for quantum machine learning algorithms. Quantum Splines (QSplines) have recently been proposed to approximate quantum activation functions to introduce non-linearity in quantum algorithms. However, QSplines make use of the HHL as a subroutine and require a fault-tolerant quantum computer to be correctly implemented. This work proposes the Generalised Hybrid Quantum Splines (GHQSplines), a novel method for approximating non-linear quantum activation functions using hybrid quantum-classical computation. The GHQSplines overcome the highly demanding requirements of the original QSplines in terms of quantum hardware and can be implemented using near-term quantum computers. Furthermore, the proposed method relies on a flexible problem representation for non-linear approximation and it is suitable to be embedded in existing quantum neural network architectures. In addition, we provide a practical implementation of the GHQSplines using Pennylane and show that our model outperforms the original QSplines in terms of quality of fitting.
We establish an entropic, quantum central limit theorem and quantum inverse sumset theorem in discrete-variable quantum systems describing qudits or qubits. Both results are enabled by using our recently-discovered quantum convolution. We show that the exponential rate of convergence of the entropic central limit theorem is bounded by the magic gap. We also establish an ``quantum, entropic inverse sumset theorem,'' by introducing a quantum doubling constant. Furthermore, we introduce a ``quantum Ruzsa divergence'', and we pose a conjecture called ``convolutional strong subaddivity,'' which leads to the triangle inequality for the quantum Ruzsa divergence. A byproduct of this work is a magic measure to quantify the nonstabilizer nature of a state, based on the quantum Ruzsa divergence.
Abductive reasoning is the process of making educated guesses to provide explanations for observations. Although many applications require the use of knowledge for explanations, the utilization of abductive reasoning in conjunction with structured knowledge, such as a knowledge graph, remains largely unexplored. To fill this gap, this paper introduces the task of complex logical hypothesis generation, as an initial step towards abductive logical reasoning with KG. In this task, we aim to generate a complex logical hypothesis so that it can explain a set of observations. We find that the supervised trained generative model can generate logical hypotheses that are structurally closer to the reference hypothesis. However, when generalized to unseen observations, this training objective does not guarantee better hypothesis generation. To address this, we introduce the Reinforcement Learning from Knowledge Graph (RLF-KG) method, which minimizes differences between observations and conclusions drawn from generated hypotheses according to the KG. Experiments show that, with RLF-KG's assistance, the generated hypotheses provide better explanations, and achieve state-of-the-art results on three widely used KGs.
Sequence-independent lifting is a procedure for strengthening valid inequalities of an integer program. We generalize the sequence-independent lifting method of Gu, Nemhauser, and Savelsbergh (GNS lifting) for cover inequalities and correct an error in their proposed generalization. We obtain a new sequence-independent lifting technique -- piecewise-constant (PC) lifting -- with a number of interesting properties. We derive a broad set of sufficient conditions under which PC lifting is facet defining. To our knowledge, this is the first characterization of facet-defining sequence-independent liftings that are efficiently computable from the underlying cover. Finally, we demonstrate via experiments that PC lifting can be a useful alternative to GNS lifting. We test our new lifting techniques atop a number of novel cover cut generation routines, which prove to be effective in experiments with CPLEX.
We consider the ubiquitous linear inverse problems with additive Gaussian noise and propose an unsupervised sampling approach called diffusion model based posterior sampling (DMPS) to reconstruct the unknown signal from noisy linear measurements. Specifically, using one diffusion model (DM) as an implicit prior, the fundamental difficulty in performing posterior sampling is that the noise-perturbed likelihood score, i.e., gradient of an annealed likelihood function, is intractable. To circumvent this problem, we introduce a simple yet effective closed-form approximation using an uninformative prior assumption. Extensive experiments are conducted on a variety of noisy linear inverse problems such as noisy super-resolution, denoising, deblurring, and colorization. In all tasks, the proposed DMPS demonstrates highly competitive or even better performances on various tasks while being 3 times faster than the state-of-the-art competitor diffusion posterior sampling (DPS).
Understanding the dependence structure between response variables is an important component in the analysis of correlated multivariate data. This article focuses on modeling dependence structures in multivariate binary data, motivated by a study aiming to understand how patterns in different U.S. senators' votes are determined by similarities (or lack thereof) in their attributes, e.g., political parties and social network profiles. To address such a research question, we propose a new Ising similarity regression model which regresses pairwise interaction coefficients in the Ising model against a set of similarity measures available/constructed from covariates. Model selection approaches are further developed through regularizing the pseudo-likelihood function with an adaptive lasso penalty to enable the selection of relevant similarity measures. We establish estimation and selection consistency of the proposed estimator under a general setting where the number of similarity measures and responses tend to infinity. Simulation study demonstrates the strong finite sample performance of the proposed estimator in terms of parameter estimation and similarity selection. Applying the Ising similarity regression model to a dataset of roll call voting records of 100 U.S. senators, we are able to quantify how similarities in senators' parties, businessman occupations and social network profiles drive their voting associations.
In hyperspectral sparse unmixing, a successful approach employs spectral bundles to address the variability of the endmembers in the spatial domain. However, the regularization penalties usually employed aggregate substantial computational complexity, and the solutions are very noise-sensitive. We generalize a multiscale spatial regularization approach to solve the unmixing problem by incorporating group sparsity-inducing mixed norms. Then, we propose a noise-robust method that can take advantage of the bundle structure to deal with endmember variability while ensuring inter- and intra-class sparsity in abundance estimation with reasonable computational cost. We also present a general heuristic to select the \emph{most representative} abundance estimation over multiple runs of the unmixing process, yielding a solution that is robust and highly reproducible. Experiments illustrate the robustness and consistency of the results when compared to related methods.
Although continuous advances in theoretical modelling of Molecular Communications (MC) are observed, there is still an insuperable gap between theory and experimental testbeds, especially at the microscale. In this paper, the development of the first testbed incorporating engineered yeast cells is reported. Different from the existing literature, eukaryotic yeast cells are considered for both the sender and the receiver, with {\alpha}-factor molecules facilitating the information transfer. The use of such cells is motivated mainly by the well understood biological mechanism of yeast mating, together with their genetic amenability. In addition, recent advances in yeast biosensing establish yeast as a suitable detector and a neat interface to in-body sensor networks. The system under consideration is presented first, and the mathematical models of the underlying biological processes leading to an end-to-end (E2E) system are given. The experimental setup is then described and used to obtain experimental results which validate the developed mathematical models. Beyond that, the ability of the system to effectively generate output pulses in response to repeated stimuli is demonstrated, reporting one event per two hours. However, fast RNA fluctuations indicate cell responses in less than three minutes, demonstrating the potential for much higher rates in the future.
We propose a predictor-corrector adaptive method for the study of hyperbolic partial differential equations (PDEs) under uncertainty. Constructed around the framework of stochastic finite volume (SFV) methods, our approach circumvents sampling schemes or simulation ensembles while also preserving fundamental properties, in particular hyperbolicity of the resulting systems and conservation of the discrete solutions. Furthermore, we augment the existing SFV theory with a priori convergence results for statistical quantities, in particular push-forward densities, which we demonstrate through numerical experiments. By linking refinement indicators to regions of the physical and stochastic spaces, we drive anisotropic refinements of the discretizations, introducing new degrees of freedom (DoFs) where deemed profitable. To illustrate our proposed method, we consider a series of numerical examples for non-linear hyperbolic PDEs based on Burgers' and Euler's equations.
Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.