亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we target the adaptive source driven 3D scene editing task by proposing a CustomNeRF model that unifies a text description or a reference image as the editing prompt. However, obtaining desired editing results conformed with the editing prompt is nontrivial since there exist two significant challenges, including accurate editing of only foreground regions and multi-view consistency given a single-view reference image. To tackle the first challenge, we propose a Local-Global Iterative Editing (LGIE) training scheme that alternates between foreground region editing and full-image editing, aimed at foreground-only manipulation while preserving the background. For the second challenge, we also design a class-guided regularization that exploits class priors within the generation model to alleviate the inconsistency problem among different views in image-driven editing. Extensive experiments show that our CustomNeRF produces precise editing results under various real scenes for both text- and image-driven settings.

相關內容

In this paper, we present a novel ciphertext-policy attribute based encryption (CP-ABE) scheme that offers a flexible access structure. Our proposed scheme incorporates an access tree as its access control policy, enabling fine-grained access control over encrypted data. The security of our scheme is provable under the hardness assumption of the decisional Ring-Learning with Errors (R-LWE) problem, ensuring robust protection against unauthorized access. CP-ABE is a cryptographic technique that allows data owners to encrypt their data with access policies defined in terms of attributes. Only users possessing the required attributes can decrypt and access the encrypted data. Our scheme extends the capabilities of CP-ABE by introducing a flexible access structure based on an access tree. This structure enables more complex and customizable access policies, accommodating a wider range of real-world scenarios. To ensure the security of our scheme, we rely on the decisional R-LWE problem, a well-established hardness assumption in cryptography. By proving the security of our scheme under this assumption, we provide a strong guarantee of protection against potential attacks. Furthermore, our proposed scheme operates in the standard model, which means it does not rely on any additional assumptions or idealized cryptographic primitives. This enhances the practicality and applicability of our scheme, making it suitable for real-world deployment. We evaluate the performance and efficiency of our scheme through extensive simulations and comparisons with existing CP-ABE schemes. The results demonstrate the effectiveness and scalability of our proposed approach, highlighting its potential for secure and flexible data access control in various domains.

We introduce a novel large-scale scene reconstruction benchmark using the newly developed 3D representation approach, Gaussian Splatting, on our expansive U-Scene dataset. U-Scene encompasses over one and a half square kilometres, featuring a comprehensive RGB dataset coupled with LiDAR ground truth. For data acquisition, we employed the Matrix 300 drone equipped with the high-accuracy Zenmuse L1 LiDAR, enabling precise rooftop data collection. This dataset, offers a unique blend of urban and academic environments for advanced spatial analysis convers more than 1.5 km$^2$. Our evaluation of U-Scene with Gaussian Splatting includes a detailed analysis across various novel viewpoints. We also juxtapose these results with those derived from our accurate point cloud dataset, highlighting significant differences that underscore the importance of combine multi-modal information

This paper proposes Multi-modAl Retrieval model via Visual modulE pLugin (MARVEL), which learns an embedding space for queries and multi-modal documents to conduct retrieval. MARVEL encodes queries and multi-modal documents with a unified encoder model, which helps to alleviate the modality gap between images and texts. Specifically, we enable the image understanding ability of the well-trained dense retriever, T5-ANCE, by incorporating the visual module's encoded image features as its inputs. To facilitate the multi-modal retrieval tasks, we build the ClueWeb22-MM dataset based on the ClueWeb22 dataset, which regards anchor texts as queries, and exacts the related text and image documents from anchor-linked web pages. Our experiments show that MARVEL significantly outperforms the state-of-the-art methods on the multi-modal retrieval dataset WebQA and ClueWeb22-MM. MARVEL provides an opportunity to broaden the advantages of text retrieval to the multi-model scenario. Besides, we also illustrate that the language model has the ability to extract image semantics and partly map the image features to the input word embedding space. All codes are available at //github.com/OpenMatch/MARVEL.

In this work, we address question answering (QA) over a hybrid of tabular and textual data that are very common content on the Web (e.g. SEC filings), where discrete reasoning capabilities are often required. Recently, large language models (LLMs) like GPT-4 have demonstrated strong multi-step reasoning capabilities. We then consider harnessing the amazing power of LLMs to solve our task. We abstract a Step-wise Pipeline for tabular and textual QA, which consists of three key steps, including Extractor, Reasoner and Executor, and initially design an instruction to instantiate the pipeline and validate that GPT-4 outperforms all existing methods. However, utilizing an online LLM like GPT-4 holds various challenges in terms of cost, latency, and data security risk, which motivates us to specialize smaller LLMs in this task. We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets following the Step-wise Pipeline. The experimental results have verified that our TAT-LLM model can outperform all baseline models, including the previous best fine-tuned models and very large-scale LLMs like GPT-4 on FinQA, TAT-QA and TAT-DQA benchmarks. We hope our work can serve as a pioneering example of specializing smaller language models for specific tasks.

This paper proposes Multi-modAl Retrieval model via Visual modulE pLugin (MARVEL) to learn an embedding space for queries and multi-modal documents to conduct retrieval. MARVEL encodes queries and multi-modal documents with a unified encoder model, which helps to alleviate the modality gap between images and texts. Specifically, we enable the image understanding ability of a well-trained dense retriever, T5-ANCE, by incorporating the image features encoded by the visual module as its inputs. To facilitate the multi-modal retrieval tasks, we build the ClueWeb22-MM dataset based on the ClueWeb22 dataset, which regards anchor texts as queries, and exact the related texts and image documents from anchor linked web pages. Our experiments show that MARVEL significantly outperforms the state-of-the-art methods on the multi-modal retrieval dataset WebQA and ClueWeb22-MM. Our further analyses show that the visual module plugin method is tailored to enable the image understanding ability for an existing dense retrieval model. Besides, we also show that the language model has the ability to extract image semantics from image encoders and adapt the image features in the input space of language models. All codes are available at //github.com/OpenMatch/MARVEL.

In this paper, a robust weighted score for unbalanced data (ROWSU) is proposed for selecting the most discriminative feature for high dimensional gene expression binary classification with class-imbalance problem. The method addresses one of the most challenging problems of highly skewed class distributions in gene expression datasets that adversely affect the performance of classification algorithms. First, the training dataset is balanced by synthetically generating data points from minority class observations. Second, a minimum subset of genes is selected using a greedy search approach. Third, a novel weighted robust score, where the weights are computed by support vectors, is introduced to obtain a refined set of genes. The highest-scoring genes based on this approach are combined with the minimum subset of genes selected by the greedy search approach to form the final set of genes. The novel method ensures the selection of the most discriminative genes, even in the presence of skewed class distribution, thus improving the performance of the classifiers. The performance of the proposed ROWSU method is evaluated on $6$ gene expression datasets. Classification accuracy and sensitivity are used as performance metrics to compare the proposed ROWSU algorithm with several other state-of-the-art methods. Boxplots and stability plots are also constructed for a better understanding of the results. The results show that the proposed method outperforms the existing feature selection procedures based on classification performance from k nearest neighbours (kNN) and random forest (RF) classifiers.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.

In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.

北京阿比特科技有限公司