亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cities often lack up-to-date data analytics to evaluate and implement transport planning interventions to achieve sustainability goals, as traditional data sources are expensive, infrequent, and suffer from data latency. Mobile phone data provide an inexpensive source of geospatial information to capture human mobility at unprecedented geographic and temporal granularity. This paper proposes a method to estimate updated mode of transportation usage in a city, with novel usage of mobile phone application traces to infer previously hard to detect modes, such as bikes and ride-hailing/taxi. By using data fusion and matrix factorisation, we integrate socioeconomic and demographic attributes of the local resident population into the model. We tested the method in a case study of Santiago (Chile), and found that changes from 2012 to 2020 in mode of transportation inferred by the method are coherent with expectations from domain knowledge and the literature, such as ride-hailing trips replacing mass transport.

相關內容

We study the problem of list-decodable sparse mean estimation. Specifically, for a parameter $\alpha \in (0, 1/2)$, we are given $m$ points in $\mathbb{R}^n$, $\lfloor \alpha m \rfloor$ of which are i.i.d. samples from a distribution $D$ with unknown $k$-sparse mean $\mu$. No assumptions are made on the remaining points, which form the majority of the dataset. The goal is to return a small list of candidates containing a vector $\widehat \mu$ such that $\| \widehat \mu - \mu \|_2$ is small. Prior work had studied the problem of list-decodable mean estimation in the dense setting. In this work, we develop a novel, conceptually simpler technique for list-decodable mean estimation. As the main application of our approach, we provide the first sample and computationally efficient algorithm for list-decodable sparse mean estimation. In particular, for distributions with ``certifiably bounded'' $t$-th moments in $k$-sparse directions and sufficiently light tails, our algorithm achieves error of $(1/\alpha)^{O(1/t)}$ with sample complexity $m = (k\log(n))^{O(t)}/\alpha$ and running time $\mathrm{poly}(mn^t)$. For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $\Theta (\sqrt{\log(1/\alpha)})$ with quasi-polynomial sample and computational complexity. We complement our upper bounds with nearly-matching statistical query and low-degree polynomial testing lower bounds.

Distributed machine learning has been widely used in recent years to tackle the large and complex dataset problem. Therewith, the security of distributed learning has also drawn increasing attentions from both academia and industry. In this context, federated learning (FL) was developed as a "secure" distributed learning by maintaining private training data locally and only public model gradients are communicated between. However, to date, a variety of gradient leakage attacks have been proposed for this procedure and prove that it is insecure. For instance, a common drawback of these attacks is shared: they require too much auxiliary information such as model weights, optimizers, and some hyperparameters (e.g., learning rate), which are difficult to obtain in real situations. Moreover, many existing algorithms avoid transmitting model gradients in FL and turn to sending model weights, such as FedAvg, but few people consider its security breach. In this paper, we present two novel frameworks to demonstrate that transmitting model weights is also likely to leak private local data of clients, i.e., (DLM and DLM+), under the FL scenario. In addition, a number of experiments are performed to illustrate the effect and generality of our attack frameworks. At the end of this paper, we also introduce two defenses to the proposed attacks and evaluate their protection effects. Comprehensively, the proposed attack and defense schemes can be applied to the general distributed learning scenario as well, just with some appropriate customization.

Cross-validation is a widely-used technique to estimate prediction error, but its behavior is complex and not fully understood. Ideally, one would like to think that cross-validation estimates the prediction error for the model at hand, fit to the training data. We prove that this is not the case for the linear model fit by ordinary least squares; rather it estimates the average prediction error of models fit on other unseen training sets drawn from the same population. We further show that this phenomenon occurs for most popular estimates of prediction error, including data splitting, bootstrapping, and Mallow's Cp. Next, the standard confidence intervals for prediction error derived from cross-validation may have coverage far below the desired level. Because each data point is used for both training and testing, there are correlations among the measured accuracies for each fold, and so the usual estimate of variance is too small. We introduce a nested cross-validation scheme to estimate this variance more accurately, and we show empirically that this modification leads to intervals with approximately correct coverage in many examples where traditional cross-validation intervals fail.

Machine learning abilities have become a vital component for various solutions across industries, applications, and sectors. Many organizations seek to leverage AI-based solutions across their business services to unlock better efficiency and increase productivity. Problems, however, can arise if there is a lack of quality data for AI-model training, scalability, and maintenance. We propose a data-centric federated learning architecture leveraged by a public blockchain and smart contracts to overcome this significant issue. Our proposed solution provides a virtual public marketplace where developers, data scientists, and AI-engineer can publish their models and collaboratively create and access quality data for training. We enhance data quality and integrity through an incentive mechanism that rewards contributors for data contribution and verification. Those combined with the proposed framework helped increase with only one user simulation the training dataset with an average of 100 input daily and the model accuracy by approximately 4\%.

We commonly assume that data are a homogeneous set of observations when learning the structure of Bayesian networks. However, they often comprise different data sets that are related but not homogeneous because they have been collected in different ways or from different populations. In our previous work (Azzimonti, Corani and Scutari, 2021), we proposed a closed-form Bayesian Hierarchical Dirichlet score for discrete data that pools information across related data sets to learn a single encompassing network structure, while taking into account the differences in their probabilistic structures. In this paper, we provide an analogous solution for learning a Bayesian network from continuous data using mixed-effects models to pool information across the related data sets. We study its structural, parametric, predictive and classification accuracy and we show that it outperforms both conditional Gaussian Bayesian networks (that do not perform any pooling) and classical Gaussian Bayesian networks (that disregard the heterogeneous nature of the data). The improvement is marked for low sample sizes and for unbalanced data sets.

Modeling the preferences of agents over a set of alternatives is a principal concern in many areas. The dominant approach has been to find a single reward/utility function with the property that alternatives yielding higher rewards are preferred over alternatives yielding lower rewards. However, in many settings, preferences are based on multiple, often competing, objectives; a single reward function is not adequate to represent such preferences. This paper proposes a method for inferring multi-objective reward-based representations of an agent's observed preferences. We model the agent's priorities over different objectives as entering lexicographically, so that objectives with lower priorities matter only when the agent is indifferent with respect to objectives with higher priorities. We offer two example applications in healthcare, one inspired by cancer treatment, the other inspired by organ transplantation, to illustrate how the lexicographically-ordered rewards we learn can provide a better understanding of a decision-maker's preferences and help improve policies when used in reinforcement learning.

Relatively little is known about mobile phone use in a Supply Chain Management (SCM) context, especially in the Bangladeshi Ready-Made Garment (RMG) industry. RMG is a very important industry for the Bangladeshi economy but is criticized for long product supply times due to poor SCM. RMG requires obtaining real-time information and enhanced dynamic control, through utilizing information sharing and connecting stakeholders in garment manufacturing. However, a lack of IT support in the Bangladeshi RMG sector, the high price of computers and the low level of adoption of the computer-based internet are obstacles to providing sophisticated computer-aided SCM. Alternatively, the explosive adoption of mobile phones and continuous improvement of this technology is an opportunity to provide mobile-based SCM for the RMG sector. This research presents a mobile phone-based SCM framework for the Bangladeshi RMG sector. The proposed framework shows that mobile phone-based SCM can positively impact communication, information exchange, information retrieval and flow, coordination and management, which represent the main processes of effective SCM. However, to capitalize on these benefits, it is also important to discover the critical success factors and barriers to mobile SCM systems.

Response-Adaptive Randomization (RAR) is part of a wider class of data-dependent sampling algorithms, for which clinical trials are typically used as a motivating application. In that context, patient allocation to treatments is determined by randomization probabilities that change based on the accrued response data in order to achieve experimental goals. RAR has received abundant theoretical attention from the biostatistical literature since the 1930's and has been the subject of numerous debates. In the last decade, it has received renewed consideration from the applied and methodological communities, driven by well-known practical examples and its widespread use in machine learning. Papers on the subject present different views on its usefulness, and these are not easy to reconcile. This work aims to address this gap by providing a unified, broad and fresh review of methodological and practical issues to consider when debating the use of RAR in clinical trials.

Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with a very high number of supports. The m-OT solves several smaller optimal transport problems and then returns the average of their costs and transportation plans. Despite its scalability advantage, the m-OT does not consider the relationship between mini-batches which leads to undesirable estimation. Moreover, the m-OT does not approximate a proper metric between probability measures since the identity property is not satisfied. To address these problems, we propose a novel mini-batch scheme for optimal transport, named Batch of Mini-batches Optimal Transport (BoMb-OT), that finds the optimal coupling between mini-batches and it can be seen as an approximation to a well-defined distance on the space of probability measures. Furthermore, we show that the m-OT is a limit of the entropic regularized version of the BoMb-OT when the regularized parameter goes to infinity. Finally, we carry out experiments on various applications including deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow to show that the BoMb-OT can be widely applied and performs well in various applications.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

北京阿比特科技有限公司