亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Adaptive importance sampling (AIS) algorithms are widely used to approximate expectations with respect to complicated target probability distributions. When the target has heavy tails, existing AIS algorithms can provide inconsistent estimators or exhibit slow convergence, as they often neglect the target's tail behaviour. To avoid this pitfall, we propose an AIS algorithm that approximates the target by Student-t proposal distributions. We adapt location and scale parameters by matching the escort moments - which are defined even for heavy-tailed distributions - of the target and the proposal. These updates minimize the $\alpha$-divergence between the target and the proposal, thereby connecting with variational inference. We then show that the $\alpha$-divergence can be approximated by a generalized notion of effective sample size and leverage this new perspective to adapt the tail parameter with Bayesian optimization. We demonstrate the efficacy of our approach through applications to synthetic targets and a Bayesian Student-t regression task on a real example with clinical trial data.

相關內容

Integro-differential equations, analyzed in this work, comprise an important class of models of continuum media with nonlocal interactions. Examples include peridynamics, population and opinion dynamics, the spread of disease models, and nonlocal diffusion, to name a few. They also arise naturally as a continuum limit of interacting dynamical systems on networks. Many real-world networks, including neuronal, epidemiological, and information networks, exhibit self-similarity, which translates into self-similarity of the spatial domain of the continuum limit. For a class of evolution equations with nonlocal interactions on self-similar domains, we construct a discontinuous Galerkin method and develop a framework for studying its convergence. Specifically, for the model at hand, we identify a natural scale of function spaces, which respects self-similarity of the spatial domain, and estimate the rate of convergence under minimal assumptions on the regularity of the interaction kernel. The analytical results are illustrated by numerical experiments on a model problem.

Sparse attention as a efficient method can significantly decrease the computation cost, but current sparse attention tend to rely on window self attention which block the global information flow. For this problem, we present Shifted Cross Chunk Attention (SCCA), using different KV shifting strategy to extend respective field in each attention layer. Except, we combine Dilated Attention(DA) and Dilated Neighborhood Attention(DNA) to present Shifted Dilated Attention(SDA). Both SCCA and SDA can accumulate attention results in multi head attention to obtain approximate respective field in full attention. In this paper, we conduct language modeling experiments using different pattern of SCCA and combination of SCCA and SDA. The proposed shifted cross chunk attention (SCCA) can effectively extend large language models (LLMs) to longer context combined with Positional interpolation(PI) and LoRA than current sparse attention. Notably, SCCA adopts LLaMA2 7B from 4k context to 8k in single V100. This attention pattern can provide a Plug-and-play fine-tuning method to extend model context while retaining their original architectures, and is compatible with most existing techniques.

Calibration tests based on the probability integral transform (PIT) are routinely used to assess the quality of univariate distributional forecasts. However, PIT-based calibration tests for multivariate distributional forecasts face various challenges. We propose two new types of tests based on proper scoring rules, which overcome these challenges. They arise from a general framework for calibration testing in the multivariate case, introduced in this work. The new tests have good size and power properties in simulations and solve various problems of existing tests. We apply the tests to forecast distributions for macroeconomic and financial time series data.

In survival analysis, complex machine learning algorithms have been increasingly used for predictive modeling. Given a collection of features available for inclusion in a predictive model, it may be of interest to quantify the relative importance of a subset of features for the prediction task at hand. In particular, in HIV vaccine trials, participant baseline characteristics are used to predict the probability of infection over the intended follow-up period, and investigators may wish to understand how much certain types of predictors, such as behavioral factors, contribute toward overall predictiveness. Time-to-event outcomes such as time to infection are often subject to right censoring, and existing methods for assessing variable importance are typically not intended to be used in this setting. We describe a broad class of algorithm-agnostic variable importance measures for prediction in the context of survival data. We propose a nonparametric efficient estimation procedure that incorporates flexible learning of nuisance parameters, yields asymptotically valid inference, and enjoys double-robustness. We assess the performance of our proposed procedure via numerical simulations and analyze data from the HVTN 702 study to inform enrollment strategies for future HIV vaccine trials.

Gaussian graphical models are useful tools for conditional independence structure inference of multivariate random variables. Unfortunately, Bayesian inference of latent graph structures is challenging due to exponential growth of $\mathcal{G}_n$, the set of all graphs in $n$ vertices. One approach that has been proposed to tackle this problem is to limit search to subsets of $\mathcal{G}_n$. In this paper, we study subsets that are vector subspaces with the cycle space $\mathcal{C}_n$ as main example. We propose a novel prior on $\mathcal{C}_n$ based on linear combinations of cycle basis elements and present its theoretical properties. Using this prior, we implement a Markov chain Monte Carlo algorithm, and show that (i) posterior edge inclusion estimates computed with our technique are comparable to estimates from the standard technique despite searching a smaller graph space, and (ii) the vector space perspective enables straightforward implementation of MCMC algorithms.

The maximum capacity path problem is to find a path from a source to a sink which has the maximum capacity among all paths. This paper addresses an extension of this problem which considers loss factors. It is called the generalized maximum capacity path problem. The problem is a network flow optimization problem whose network contains capacities as well as loss factors for arcs. The aim of the problem is to find a path from an origin to a destination so as to send a maximum flow along the path considering loss factors and respecting capacity constraints. The paper presents a zero-one formulation of the problem and moreover, it presents two efficient algorithms which solve the problem in polynomial time.

Subsurface storage of CO$_2$ is an important means to mitigate climate change, and to investigate the fate of CO$_2$ over several decades in vast reservoirs, numerical simulation based on realistic models is essential. Faults and other complex geological structures introduce modeling challenges as their effects on storage operations are uncertain due to limited data. In this work, we present a computational framework for forward propagation of uncertainty, including stochastic upscaling and copula representation of flow functions for a CO$_2$ storage site using the Vette fault zone in the Smeaheia formation in the North Sea as a test case. The upscaling method leads to a reduction of the number of stochastic dimensions and the cost of evaluating the reservoir model. A viable model that represents the upscaled data needs to capture dependencies between variables, and allow sampling. Copulas provide representation of dependent multidimensional random variables and a good fit to data, allow fast sampling, and coupling to the forward propagation method via independent uniform random variables. The non-stationary correlation within some of the upscaled flow function are accurately captured by a data-driven transformation model. The uncertainty in upscaled flow functions and other parameters are propagated to uncertain leakage estimates using numerical reservoir simulation of a two-phase system. The expectations of leakage are estimated by an adaptive stratified sampling technique, where samples are sequentially concentrated to regions of the parameter space to greedily maximize variance reduction. We demonstrate cost reduction compared to standard Monte Carlo of one or two orders of magnitude for simpler test cases with only fault and reservoir layer permeabilities assumed uncertain, and factors 2--8 cost reduction for stochastic multi-phase flow properties and more complex stochastic models.

Finite-dimensional truncations are routinely used to approximate partial differential equations (PDEs), either to obtain numerical solutions or to derive reduced-order models. The resulting discretized equations are known to violate certain physical properties of the system. In particular, first integrals of the PDE may not remain invariant after discretization. Here, we use the method of reduced-order nonlinear solutions (RONS) to ensure that the conserved quantities of the PDE survive its finite-dimensional truncation. In particular, we develop two methods: Galerkin RONS and finite volume RONS. Galerkin RONS ensures the conservation of first integrals in Galerkin-type truncations, whether used for direct numerical simulations or reduced-order modeling. Similarly, finite volume RONS conserves any number of first integrals of the system, including its total energy, after finite volume discretization. Both methods are applicable to general time-dependent PDEs and can be easily incorporated in existing Galerkin-type or finite volume code. We demonstrate the efficacy of our methods on two examples: direct numerical simulations of the shallow water equation and a reduced-order model of the nonlinear Schrodinger equation. As a byproduct, we also generalize RONS to phenomena described by a system of PDEs.

We discuss avoidance of sure loss and coherence results for semicopulas and standardized functions, i.e., for grounded, 1-increasing functions with value $1$ at $(1,1,\ldots, 1)$. We characterize the existence of a $k$-increasing $n$-variate function $C$ fulfilling $A\leq C\leq B$ for standardized $n$-variate functions $A,B$ and discuss the method for constructing this function. Our proofs also include procedures for extending functions on some countably infinite mesh to functions on the unit box. We provide a characterization when $A$ respectively $B$ coincides with the pointwise infimum respectively supremum of the set of all $k$-increasing $n$-variate functions $C$ fulfilling $A\leq C\leq B$.

Most of the characterizations of probability distributions are based on properties of functions of possibly independent random variables. We investigate characterizations of probability distributions through properties of minima or maxima of max-independent, min-independent and quasi-independent random variables generalizing the results from independent random variables of Kotlarski (1978), Prakasa Rao (1992) and Klebanov (1973).

北京阿比特科技有限公司