亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Elitism, which constructs the new population by preserving best solutions out of the old population and newly-generated solutions, has been a default way for population update since its introduction into multi-objective evolutionary algorithms (MOEAs) in the late 1990s. In this paper, we take an opposite perspective to conduct the population update in MOEAs by simply discarding elitism. That is, we treat the newly-generated solutions as the new population directly (so that all selection pressure comes from mating selection). We propose a simple non-elitist MOEA (called NE-MOEA) that only uses Pareto dominance sorting to compare solutions, without involving any diversity-related selection criterion. Preliminary experimental results show that NE-MOEA can compete with well-known elitist MOEAs (NSGA-II, SMS-EMOA and NSGA-III) on several combinatorial problems. Lastly, we discuss limitations of the proposed non-elitist algorithm and suggest possible future research directions.

相關內容

Intensive care occupancy is an important indicator of health care stress that has been used to guide policy decisions during the COVID-19 pandemic. Toward reliable decision-making as a pandemic progresses, estimating the rates at which patients are admitted to and discharged from hospitals and intensive care units (ICUs) is crucial. Since individual-level hospital data are rarely available to modelers in each geographic locality of interest, it is important to develop tools for inferring these rates from publicly available daily numbers of hospital and ICU beds occupied. We develop such an estimation approach based on an immigration-death process that models fluctuations of ICU occupancy. Our flexible framework allows for immigration and death rates to depend on covariates, such as hospital bed occupancy and daily SARS-CoV-2 test positivity rate, which may drive changes in hospital ICU operations. We demonstrate via simulation studies that the proposed method performs well on noisy time series data and apply our statistical framework to hospitalization data from the University of California, Irvine (UCI) Health and Orange County, California. By introducing a likelihood-based framework where immigration and death rates can vary with covariates, we find, through rigorous model selection, that hospitalization and positivity rates are crucial covariates for modeling ICU stay dynamics and validate our per-patient ICU stay estimates using anonymized patient-level UCI hospital data.

In the metric distortion problem there is a set of candidates and a set of voters, all residing in the same metric space. The objective is to choose a candidate with minimum social cost, defined as the total distance of the chosen candidate from all voters. The challenge is that the algorithm receives only ordinal input from each voter, in the form of a ranked list of candidates in non-decreasing order of their distances from her, whereas the objective function is cardinal. The distortion of an algorithm is its worst-case approximation factor with respect to the optimal social cost. A series of papers culminated in a 3-distortion algorithm, which is tight with respect to all deterministic algorithms. Aiming to overcome the limitations of worst-case analysis, we revisit the metric distortion problem through the learning-augmented framework, where the algorithm is provided with some prediction regarding the optimal candidate. The quality of this prediction is unknown, and the goal is to evaluate the performance of the algorithm under a accurate prediction (known as consistency), while simultaneously providing worst-case guarantees even for arbitrarily inaccurate predictions (known as robustness). For our main result, we characterize the robustness-consistency Pareto frontier for the metric distortion problem. We first identify an inevitable trade-off between robustness and consistency. We then devise a family of learning-augmented algorithms that achieves any desired robustness-consistency pair on this Pareto frontier. Furthermore, we provide a more refined analysis of the distortion bounds as a function of the prediction error (with consistency and robustness being two extremes). Finally, we also prove distortion bounds that integrate the notion of $\alpha$-decisiveness, which quantifies the extent to which a voter prefers her favorite candidate relative to the rest.

Quantum algorithms for factorization, search, and simulation obtain computational advantage by performing control flow such as branching and iteration based on the value of quantum data in superposition. Complicating realization of these algorithms is the fact that in predominant quantum machine models, all control flow as embodied by the program counter is classical, and cannot exist in superposition. In this work, we identify that an alternative model to enable a program counter in superposition faces an obstacle -- no such machine can correctly support control flow constructs with non-injective semantics, including the conventional conditional jump. In fact, prior attempts to support this instruction cause programs to inappropriately collapse the superposition of data, meaning that quantum advantage is lost. We prove that in general, control flow abstractions with non-injective transition semantics, such as the conventional conditional jump or the $\lambda$-calculus, cannot operate over quantum data while preserving its superposition and the computational advantage of the quantum algorithm. This theorem explains why quantum programming languages to date have been unable to directly leverage the classical concept of programs as data to support the rich control flow abstractions known in classical programming. As an alternative, we present a new quantum machine model featuring variants of conditional jump with inherently injective semantics, which sidesteps our impossibility theorem and correctly enables both quantum effects on data and data-dependent control flow. We identify the necessary condition for programs for such a machine to preserve superposition of data, and show that expressible programs coincide with the unitary quantum circuits, with examples for phase estimation, quantum walk, and physical simulation.

The evolutionary diversity optimization aims at finding a diverse set of solutions which satisfy some constraint on their fitness. In the context of multi-objective optimization this constraint can require solutions to be Pareto-optimal. In this paper we study how the GSEMO algorithm with additional diversity-enhancing heuristic optimizes a diversity of its population on a bi-objective benchmark problem OneMinMax, for which all solutions are Pareto-optimal. We provide a rigorous runtime analysis of the last step of the optimization, when the algorithm starts with a population with a second-best diversity, and prove that it finds a population with optimal diversity in expected time $O(n^2)$, when the problem size $n$ is odd. For reaching our goal, we analyse the random walk of the population, which reflects the frequency of changes in the population and their outcomes.

We develop extreme data compression for use in Bayesian model comparison via the MOPED algorithm, as well as more general score compression. We find that Bayes factors from data compressed with the MOPED algorithm are identical to those from their uncompressed datasets when the models are linear and the errors Gaussian. In other nonlinear cases, whether nested or not, we find negligible differences in the Bayes factors, and show this explicitly for the Pantheon-SH0ES supernova dataset. We also investigate the sampling properties of the Bayesian Evidence as a frequentist statistic, and find that extreme data compression reduces the sampling variance of the Evidence, but has no impact on the sampling distribution of Bayes factors. Since model comparison can be a very computationally-intensive task, MOPED extreme data compression may present significant advantages in computational time.

For several decades the dominant techniques for integer linear programming have been branching and cutting planes. Recently, several authors have developed core point methods for solving symmetric integer linear programs (ILPs). An integer point is called a core point if its orbit polytope is lattice-free. It has been shown that for symmetric ILPs, optimizing over the set of core points gives the same answer as considering the entire space. Existing core point techniques rely on the number of core points (or equivalence classes) being finite, which requires special symmetry groups. In this paper we develop some new methods for solving symmetric ILPs (based on outer approximations of core points) that do not depend on finiteness but are more efficient if the group has large disjoint cycles in its set of generators.

Poetry holds immense significance within the cultural and traditional fabric of any nation. It serves as a vehicle for poets to articulate their emotions, preserve customs, and convey the essence of their culture. Arabic poetry is no exception, having played a cherished role in the heritage of the Arabic community throughout history and maintaining its relevance in the present era. Typically, comprehending Arabic poetry necessitates the expertise of a linguist who can analyze its content and assess its quality. This paper presents the introduction of a framework called \textit{Ashaar} //github.com/ARBML/Ashaar, which encompasses a collection of datasets and pre-trained models designed specifically for the analysis and generation of Arabic poetry. The pipeline established within our proposed approach encompasses various aspects of poetry, such as meter, theme, and era classification. It also incorporates automatic poetry diacritization, enabling more intricate analyses like automated extraction of the \textit{Arudi} style. Additionally, we explore the feasibility of generating conditional poetry through the pre-training of a character-based GPT model. Furthermore, as part of this endeavor, we provide four datasets: one for poetry generation, another for diacritization, and two for Arudi-style prediction. These datasets aim to facilitate research and development in the field of Arabic poetry by enabling researchers and enthusiasts to delve into the nuances of this rich literary tradition.

We consider the classic 1-center problem: Given a set $P$ of $n$ points in a metric space find the point in $P$ that minimizes the maximum distance to the other points of $P$. We study the complexity of this problem in $d$-dimensional $\ell_p$-metrics and in edit and Ulam metrics over strings of length $d$. Our results for the 1-center problem may be classified based on $d$ as follows. $\bullet$ Small $d$: Assuming the hitting set conjecture (HSC), we show that when $d=\omega(\log n)$, no subquadratic algorithm can solve 1-center problem in any of the $\ell_p$-metrics, or in edit or Ulam metrics. $\bullet$ Large $d$: When $d=\Omega(n)$, we extend our conditional lower bound to rule out subquartic algorithms for 1-center problem in edit metric (assuming Quantified SETH). On the other hand, we give a $(1+\epsilon)$-approximation for 1-center in Ulam metric with running time $\tilde{O_{\varepsilon}}(nd+n^2\sqrt{d})$. We also strengthen some of the above lower bounds by allowing approximations or by reducing the dimension $d$, but only against a weaker class of algorithms which list all requisite solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the well-studied 1-median problem in the edit metric, where given a set of $n$ strings each of length $n$, the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the strings in the set.

We consider error-correction coding schemes for adversarial wiretap channels (AWTCs) in which the channel can a) read a fraction of the codeword bits up to a bound $r$ and b) flip a fraction of the bits up to a bound $p$. The channel can freely choose the locations of the bit reads and bit flips via a process with unbounded computational power. Codes for the AWTC are of broad interest in the area of information security, as they can provide data resiliency in settings where an attacker has limited access to a storage or transmission medium. We investigate a family of non-linear codes known as pseudolinear codes, which were first proposed by Guruswami and Indyk (FOCS 2001) for constructing list-decodable codes independent of the AWTC setting. Unlike general non-linear codes, pseudolinear codes admit efficient encoders and have succinct representations. We focus on unique decoding and show that random pseudolinear codes can achieve rates up to the binary symmetric channel (BSC) capacity $1-H_2(p)$ for any $p,r$ in the less noisy region: $p<1/2$ and $r<1-H_2(p)$ where $H_2(\cdot)$ is the binary entropy function. Thus, pseudolinear codes are the first known optimal-rate binary code family for the less noisy AWTC that admit efficient encoders. The above result can be viewed as a derandomization result of random general codes in the AWTC setting, which in turn opens new avenues for applying derandomization techniques to randomized constructions of AWTC codes. Our proof applies a novel concentration inequality for sums of random variables with limited independence which may be of interest as an analysis tool more generally.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司