亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In 2020, due to the COVID-19 pandemic, educational activities had to be done remotely as a way to avoid the spread of the disease. What happened was not exactly a shift to an online learning model but a transition to a new approach called Emergency Remote Teaching. It is a temporary strategy to keep activities going on until it is safe again to return to the physical facilities of universities. This new setting became a challenge to both teachers and students. The lack of interaction and classroom socialization became obstacles for students to continue engaged. Before the pandemic, hackathons -- short-lived events (1 to 3 days) where participants intensively collaboration to develop software prototypes -- were starting to be explored as an alternative venue to engage students in acquiring and practicing technical skills. In this paper, we present an experience report on the usage of an online hackathon as a resource to engage students in the development of their semester project in a distributed applications course during this emergency remote teaching period. We describe details of the intervention and present an analysis of the students' perspective of the approach. One of the important findings was the efficient usage of the Discord communication tool -- already used by all students while playing games -- which helped them socialize and keep them continuously engaged in synchronous group work, "virtually collocated".

相關內容

Hackathon 是指(zhi)一(yi)群程(cheng)序員(yuan)們在(zai)一(yi)小(xiao)段特定的時間內合作編程(cheng),以(yi)極快的速度開發(fa)計算(suan)機(ji)程(cheng)序的行(xing)為。

In this paper we refer to the Open Web to the set of services offered freely to Internet users, representing a pillar of modern societies. Despite its importance for society, it is unknown how the COVID-19 pandemic is affecting the Open Web. In this paper, we address this issue, focusing our analysis on Spain, one of the countries which have been most impacted by the pandemic. On the one hand, we study the impact of the pandemic in the financial backbone of the Open Web, the online advertising business. To this end, we leverage concepts from Supply-Demand economic theory to perform a careful analysis of the elasticity in the supply of ad-spaces to the financial shortage of the online advertising business and its subsequent reduction in ad spaces' price. On the other hand, we analyze the distribution of the Open Web composition across business categories and its evolution during the COVID-19 pandemic. These analyses are conducted between Jan 1st and Dec 31st, 2020, using a reference dataset comprising information from more than 18 billion ad spaces. Our results indicate that the Open Web has experienced a moderate shift in its composition across business categories. However, this change is not produced by the financial shortage of the online advertising business, because as our analysis shows, the Open Web's supply of ad spaces is inelastic (i.e., insensitive) to the sustained low-price of ad spaces during the pandemic. Instead, existing evidence suggests that the reported shift in the Open Web composition is likely due to the change in the users' online behavior (e.g., browsing and mobile apps utilization patterns).

This paper describes a procedure that system developers can follow to translate typical mathematical representations of linearized control systems into logic theories. These theories are then used to verify system requirements and find constraints on design parameters, with the support of computer-assisted theorem proving. This method contributes to the integration of formal verification methods into the standard model-driven development processes for control systems. The theories obtained through its application comprise a set of assumptions that the system equations must satisfy, and a translation of the equations into the logic language of the Prototype Verification System theorem-proving environment. The method is illustrated with a standard case study from control theory.

The pandemic has affected every facet of human life. Apart from individuals psychological and mental health issues, the concern regarding mobility, access and communication with high risk infection is a challenging situation. People with disability are more likely vulnerable to infections. The new changes in our social lifestyle (social distancing, limiting touch) can profoundly impact the day today life of people with disability. In this paper, we will briefly discuss the situation faced by individuals with disabilities, some known remedies, and yet to be identified and curated technological remedies; the impact due to transition of special education toward online mode. Tips and tricks for better utilization of work from home concept by people with disabilities. Accessibility must be universal, accommodating all and encouraging inclusivity. As rightly said by Helen Keller, 'The only thing worse than being blind is having sight but no vision'; subsequently, going by the demand of the time, we should contribute toward the universal design approach by supporting people with disabilities and commit to the changes required in disability care to reduce the impact of pandemic. Keywords: Disabilities, pandemic, corona virus, inclusive

Artificial intelligence and machine learning are poised to disrupt PET imaging from bench to clinic. In this perspective we offer insights into how the technology could be applied to improve the design and synthesis of new radiopharmaceuticals for PET imaging, including identification of an optimal labeling approach as well as strategies for radiolabeling reaction optimization.

The COVID-19 pandemic significantly disrupted the educational sector. Faced with this life-threatening pandemic, educators had to swiftly pivot to an alternate form of course delivery without severely impacting the quality of the educational experience. Following the transition to online learning, educators had to grapple with a host of challenges. With interrupted face-to-face delivery, limited access to state-of-the-art labs, barriers with educational technologies, challenges of academic integrity, and obstacles with remote teamwork and student participation, creative solutions were urgently needed. In this chapter, we provide a rationale for a variety of course delivery models at different stages of the pandemic and highlight the approaches we took to overcome some of the pressing challenges of remote education. We also discuss how we ensured that hands-on learning remains an integral part of engineering curricula, and we argue that some of the applied changes during the pandemic will likely serve as a catalyst for modernizing education.

Although many software development projects have moved their developer discussion forums to generic platforms such as Stack Overflow, Eclipse has been steadfast in hosting their self-supported community forums. While recent studies show forums share similarities to generic communication channels, it is unknown how project-specific forums are utilized. In this paper, we analyze 832,058 forum threads and their linkages to four systems with 2,170 connected contributors to understand the participation, content and sentiment. Results show that Seniors are the most active participants to respond bug and non-bug-related threads in the forums (i.e., 66.1% and 45.5%), and sentiment among developers are inconsistent while knowledge sharing within Eclipse. We recommend the users to identify appropriate topics and ask in a positive procedural way when joining forums. For developers, preparing project-specific forums could be an option to bridge the communication between members. Irrespective of the popularity of Stack Overflow, we argue the benefits of using project-specific forum initiatives, such as GitHub Discussions, are needed to cultivate a community and its ecosystem.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

One of the most common tasks in medical imaging is semantic segmentation. Achieving this segmentation automatically has been an active area of research, but the task has been proven very challenging due to the large variation of anatomy across different patients. However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and semantic segmentation methods in the field of computer vision. Due to the data driven approaches of hierarchical feature learning in deep learning frameworks, these advances can be translated to medical images without much difficulty. Several variations of deep convolutional neural networks have been successfully applied to medical images. Especially fully convolutional architectures have been proven efficient for segmentation of 3D medical images. In this article, we describe how to build a 3D fully convolutional network (FCN) that can process 3D images in order to produce automatic semantic segmentations. The model is trained and evaluated on a clinical computed tomography (CT) dataset and shows state-of-the-art performance in multi-organ segmentation.

北京阿比特科技有限公司