亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Language models (LMs) have demonstrated remarkable proficiency in generating linguistically coherent text, sparking discussions about their relevance to understanding human language learnability. However, a significant gap exists between the training data for these models and the linguistic input a child receives. LMs are typically trained on data that is orders of magnitude larger and fundamentally different from child-directed speech (Warstadt and Bowman, 2022; Warstadt et al., 2023; Frank, 2023a). Addressing this discrepancy, our research focuses on training LMs on subsets of a single child's linguistic input. Previously, Wang, Vong, Kim, and Lake (2023) found that LMs trained in this setting can form syntactic and semantic word clusters and develop sensitivity to certain linguistic phenomena, but they only considered LSTMs and simpler neural networks trained from just one single-child dataset. Here, to examine the robustness of learnability from single-child input, we systematically train six different model architectures on five datasets (3 single-child and 2 baselines). We find that the models trained on single-child datasets showed consistent results that matched with previous work, underscoring the robustness of forming meaningful syntactic and semantic representations from a subset of a child's linguistic input.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · Extensibility · 規范化的 · 評論員 ·
2024 年 3 月 25 日

The front-end is a critical component of English text-to-speech (TTS) systems, responsible for extracting linguistic features that are essential for a text-to-speech model to synthesize speech, such as prosodies and phonemes. The English TTS front-end typically consists of a text normalization (TN) module, a prosody word prosody phrase (PWPP) module, and a grapheme-to-phoneme (G2P) module. However, current research on the English TTS front-end focuses solely on individual modules, neglecting the interdependence between them and resulting in sub-optimal performance for each module. Therefore, this paper proposes a unified front-end framework that captures the dependencies among the English TTS front-end modules. Extensive experiments have demonstrated that the proposed method achieves state-of-the-art (SOTA) performance in all modules.

Deep generative models aim to learn the underlying distribution of data and generate new ones. Despite the diversity of generative models and their high-quality generation performance in practice, most of them lack rigorous theoretical convergence proofs. In this work, we aim to establish some convergence results for OT-Flow, one of the deep generative models. First, by reformulating the framework of OT-Flow model, we establish the $\Gamma$-convergence of the formulation of OT-flow to the corresponding optimal transport (OT) problem as the regularization term parameter $\alpha$ goes to infinity. Second, since the loss function will be approximated by Monte Carlo method in training, we established the convergence between the discrete loss function and the continuous one when the sample number $N$ goes to infinity as well. Meanwhile, the approximation capability of the neural network provides an upper bound for the discrete loss function of the minimizers. The proofs in both aspects provide convincing assurances for OT-Flow.

Decision making and learning in the presence of uncertainty has attracted significant attention in view of the increasing need to achieve robust and reliable operations. In the case where uncertainty stems from the presence of adversarial attacks this need is becoming more prominent. In this paper we focus on linear and nonlinear classification problems and propose a novel adversarial training method for robust classifiers, inspired by Support Vector Machine (SVM) margins. We view robustness under a data driven lens, and derive finite sample complexity bounds for both linear and non-linear classifiers in binary and multi-class scenarios. Notably, our bounds match natural classifiers' complexity. Our algorithm minimizes a worst-case surrogate loss using Linear Programming (LP) and Second Order Cone Programming (SOCP) for linear and non-linear models. Numerical experiments on the benchmark MNIST and CIFAR10 datasets show our approach's comparable performance to state-of-the-art methods, without needing adversarial examples during training. Our work offers a comprehensive framework for enhancing binary linear and non-linear classifier robustness, embedding robustness in learning under the presence of adversaries.

We consider the problem of estimating log-determinants of large, sparse, positive definite matrices. A key focus of our algorithm is to reduce computational cost, and it is based on sparse approximate inverses. The algorithm can be implemented to be adaptive, and it uses graph spline approximation to improve accuracy. We illustrate our approach on classes of large sparse matrices.

Parameters of differential equations are essential to characterize intrinsic behaviors of dynamic systems. Numerous methods for estimating parameters in dynamic systems are computationally and/or statistically inadequate, especially for complex systems with general-order differential operators, such as motion dynamics. This article presents Green's matching, a computationally tractable and statistically efficient two-step method, which only needs to approximate trajectories in dynamic systems but not their derivatives due to the inverse of differential operators by Green's function. This yields a statistically optimal guarantee for parameter estimation in general-order equations, a feature not shared by existing methods, and provides an efficient framework for broad statistical inferences in complex dynamic systems.

Researchers and developers increasingly rely on toxicity scoring to moderate generative language model outputs, in settings such as customer service, information retrieval, and content generation. However, toxicity scoring may render pertinent information inaccessible, rigidify or "value-lock" cultural norms, and prevent language reclamation processes, particularly for marginalized people. In this work, we extend the concept of algorithmic recourse to generative language models: we provide users a novel mechanism to achieve their desired prediction by dynamically setting thresholds for toxicity filtering. Users thereby exercise increased agency relative to interactions with the baseline system. A pilot study ($n = 30$) supports the potential of our proposed recourse mechanism, indicating improvements in usability compared to fixed-threshold toxicity-filtering of model outputs. Future work should explore the intersection of toxicity scoring, model controllability, user agency, and language reclamation processes -- particularly with regard to the bias that many communities encounter when interacting with generative language models.

Language models and humans are two types of learning systems. Finding or facilitating commonalities could enable major breakthroughs in our understanding of the acquisition and evolution of language. Many theories of language evolution rely heavily on learning biases and learning pressures. Yet due to substantial differences in learning pressures, it is questionable whether the similarity between humans and machines is sufficient for insights to carry over and to be worth testing with human participants. Here, we review the emergent communication literature, a subfield of multi-agent reinforcement learning, from a language evolution perspective. We find that the emergent communication literature excels at designing and adapting models to recover initially absent linguistic phenomena of natural languages. Based on a short literature review, we identify key pressures that have recovered initially absent human patterns in emergent communication models: communicative success, efficiency, learnability, and other psycho-/sociolinguistic factors. We argue that this may serve as inspiration for how to design language models for language acquisition and language evolution research.

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.

In Coevolving Latent Space Networks with Attractors (CLSNA) models, nodes in a latent space represent social actors, and edges indicate their dynamic interactions. Attractors are added at the latent level to capture the notion of attractive and repulsive forces between nodes, borrowing from dynamical systems theory. However, CLSNA reliance on MCMC estimation makes scaling difficult, and the requirement for nodes to be present throughout the study period limit practical applications. We address these issues by (i) introducing a Stochastic gradient descent (SGD) parameter estimation method, (ii) developing a novel approach for uncertainty quantification using SGD, and (iii) extending the model to allow nodes to join and leave over time. Simulation results show that our extensions result in little loss of accuracy compared to MCMC, but can scale to much larger networks. We apply our approach to the longitudinal social networks of members of US Congress on the social media platform X. Accounting for node dynamics overcomes selection bias in the network and uncovers uniquely and increasingly repulsive forces within the Republican Party.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司