亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Measuring and testing dependence between complex objects is of great importance in modern statistics. Most existing work relied on the distance between random variables, which inevitably required the moment conditions to guarantee the distance is well-defined. Based on the geometry element ``angle", we develop a novel class of nonlinear dependence measures for data in metric space that can avoid such conditions. Specifically, by making use of the reproducing kernel Hilbert space equipped with Gaussian measure, we introduce kernel angle covariances that can be applied to complex objects such as random vectors or matrices. We estimate kernel angle covariances based on $U$-statistic and establish the corresponding independence tests via gamma approximation. Our kernel angle independence tests, imposing no-moment conditions on kernels, are robust with heavy-tailed random variables. We conduct comprehensive simulation studies and apply our proposed methods to a facial recognition task. Our kernel angle covariances-based tests show remarkable performances in dealing with image data.

相關內容

How do statistical dependencies in measurement noise influence high-dimensional inference? To answer this, we study the paradigmatic spiked matrix model of principal components analysis (PCA), where a rank-one matrix is corrupted by additive noise. We go beyond the usual independence assumption on the noise entries, by drawing the noise from a low-order polynomial orthogonal matrix ensemble. The resulting noise correlations make the setting relevant for applications but analytically challenging. We provide the first characterization of the Bayes-optimal limits of inference in this model. If the spike is rotation-invariant, we show that standard spectral PCA is optimal. However, for more general priors, both PCA and the existing approximate message passing algorithm (AMP) fall short of achieving the information-theoretic limits, which we compute using the replica method from statistical mechanics. We thus propose a novel AMP, inspired by the theory of Adaptive Thouless-Anderson-Palmer equations, which saturates the theoretical limit. This AMP comes with a rigorous state evolution analysis tracking its performance. Although we focus on specific noise distributions, our methodology can be generalized to a wide class of trace matrix ensembles at the cost of more involved expressions. Finally, despite the seemingly strong assumption of rotation-invariant noise, our theory empirically predicts algorithmic performance on real data, pointing at remarkable universality properties.

Measurement error occurs when a set of covariates influencing a response variable are corrupted by noise. This can lead to misleading inference outcomes, particularly in problems where accurately estimating the relationship between covariates and response variables is crucial, such as causal effect estimation. Existing methods for dealing with measurement error often rely on strong assumptions such as knowledge of the error distribution or its variance and availability of replicated measurements of the covariates. We propose a Bayesian Nonparametric Learning framework which is robust to mismeasured covariates, does not require the preceding assumptions, and is able to incorporate prior beliefs about the true error distribution. Our approach gives rise to two methods that are robust to measurement error via different loss functions: one based on the Total Least Squares objective and the other based on Maximum Mean Discrepancy (MMD). The latter allows for generalisation to non-Gaussian distributed errors and non-linear covariate-response relationships. We provide bounds on the generalisation error using the MMD-loss and showcase the effectiveness of the proposed framework versus prior art in real-world mental health and dietary datasets that contain significant measurement errors.

We analyze the extreme value dependence of independent, not necessarily identically distributed multivariate regularly varying random vectors. More specifically, we propose estimators of the spectral measure locally at some time point and of the spectral measures integrated over time. The uniform asymptotic normality of these estimators is proved under suitable nonparametric smoothness and regularity assumptions. We then use the process convergence of the integrated spectral measure to devise consistent tests for the null hypothesis that the spectral measure does not change over time. The finite sample performance of these tests is investigated in Monte Carlo simulations.

There are a number of measures of direct and indirect effects in the literature. They are suitable in some cases and unsuitable in others. We describe a case where the existing measures are unsuitable and propose new suitable ones. We also show that the new measures can partially handle unmeasured treatment-outcome confounding, and bound long-term effects by combining experimental and observational data.

One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., $\mathbf{P}\not\subseteq\mathbf{NC}^{1}$). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity of a composition of functions $f\diamond g$ is roughly the sum of the depth complexities of $f$ and $g$. They showed that the validity of this conjecture would imply that $\mathbf{P}\not\subseteq\mathbf{NC}^{1}$. The intuition that underlies the KRW conjecture is that the composition $f\diamond g$ should behave like a "direct-sum problem", in a certain sense, and therefore the depth complexity of $f\diamond g$ should be the sum of the individual depth complexities. Nevertheless, there are two obstacles toward turning this intuition into a proof: first, we do not know how to prove that $f\diamond g$ must behave like a direct-sum problem; second, we do not know how to prove that the complexity of the latter direct-sum problem is indeed the sum of the individual complexities. In this work, we focus on the second obstacle. To this end, we study a notion called "strong composition", which is the same as $f\diamond g$ except that it is forced to behave like a direct-sum problem. We prove a variant of the KRW conjecture for strong composition, thus overcoming the above second obstacle. This result demonstrates that the first obstacle above is the crucial barrier toward resolving the KRW conjecture. Along the way, we develop some general techniques that might be of independent interest.

Renewal process is a point process where an inter-event time between successive renewals is an independent and identically distributed random variable. Alternating renewal process is a dichotomous process and a slight generalization of the renewal process, where the inter-event time distribution alternates between two distributions. We investigate statistical properties of the number of renewals and occupation times for one of the two states in alternating renewal processes. When both means of the inter-event times are finite, the alternating renewal process can reach an equilibrium. On the other hand, an alternating renewal process shows aging when one of the means diverges. We provide analytical calculations for the moments of the number of renewals, occupation time statistics, and the correlation function for several case studies in the inter-event-time distributions. We show anomalous fluctuations for the number of renewals and occupation times when the second moment of inter-event time diverges. When the mean inter-event time diverges, distributional limit theorems for the number of events and occupation times are shown analytically. These are known as the Mittag-Leffler distribution and the generalized arcsine law in probability theory.

Using a perturbation technique, we derive a new approximate filtering and smoothing methodology generalizing along different directions several existing approaches to robust filtering based on the score and the Hessian matrix of the observation density. The main advantages of the methodology can be summarized as follows: (i) it relaxes the critical assumption of a Gaussian prior distribution for the latent states underlying such approaches; (ii) can be applied to a general class of state-space models including univariate and multivariate location, scale and count data models; (iii) has a very simple structure based on forward-backward recursions similar to the Kalman filter and smoother; (iv) allows a straightforward computation of confidence bands around the state estimates reflecting the combination of parameter and filtering uncertainty. We show through an extensive Monte Carlo study that the mean square loss with respect to exact simulation-based methods is small in a wide range of scenarios. We finally illustrate empirically the application of the methodology to the estimation of stochastic volatility and correlations in financial time-series.

We consider a binary supervised learning classification problem where instead of having data in a finite-dimensional Euclidean space, we observe measures on a compact space $\mathcal{X}$. Formally, we observe data $D_N = (\mu_1, Y_1), \ldots, (\mu_N, Y_N)$ where $\mu_i$ is a measure on $\mathcal{X}$ and $Y_i$ is a label in $\{0, 1\}$. Given a set $\mathcal{F}$ of base-classifiers on $\mathcal{X}$, we build corresponding classifiers in the space of measures. We provide upper and lower bounds on the Rademacher complexity of this new class of classifiers that can be expressed simply in terms of corresponding quantities for the class $\mathcal{F}$. If the measures $\mu_i$ are uniform over a finite set, this classification task boils down to a multi-instance learning problem. However, our approach allows more flexibility and diversity in the input data we can deal with. While such a framework has many possible applications, this work strongly emphasizes on classifying data via topological descriptors called persistence diagrams. These objects are discrete measures on $\mathbb{R}^2$, where the coordinates of each point correspond to the range of scales at which a topological feature exists. We will present several classifiers on measures and show how they can heuristically and theoretically enable a good classification performance in various settings in the case of persistence diagrams.

Generative Flow Networks (GFlowNets), a class of generative models over discrete and structured sample spaces, have been previously applied to the problem of inferring the marginal posterior distribution over the directed acyclic graph (DAG) of a Bayesian Network, given a dataset of observations. Based on recent advances extending this framework to non-discrete sample spaces, we propose in this paper to approximate the joint posterior over not only the structure of a Bayesian Network, but also the parameters of its conditional probability distributions. We use a single GFlowNet whose sampling policy follows a two-phase process: the DAG is first generated sequentially one edge at a time, and then the corresponding parameters are picked once the full structure is known. Since the parameters are included in the posterior distribution, this leaves more flexibility for the local probability models of the Bayesian Network, making our approach applicable even to non-linear models parametrized by neural networks. We show that our method, called JSP-GFN, offers an accurate approximation of the joint posterior, while comparing favorably against existing methods on both simulated and real data.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司