亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Self-training (ST) is a simple and standard approach in semi-supervised learning that has been applied to many machine learning problems. Despite its widespread acceptance and practical effectiveness, it is still not well understood why and how ST improves performance by fitting the model to potentially erroneous pseudo-labels. To investigate the properties of ST, in this study, we derive and analyze a sharp characterization of the behavior of iterative ST when training a linear classifier by minimizing the ridge-regularized convex loss for binary Gaussian mixtures, in the asymptotic limit where input dimension and data size diverge proportionally. The derivation is based on the replica method of statistical mechanics. The result indicates that, when the total number of iterations is large, ST may find a classification plane with the optimal direction regardless of the label imbalance by accumulating small parameter updates over long iterations. It is argued that this is because the small update of ST can accumulate information of the data in an almost noiseless way. However, when a label imbalance is present in true labels, the performance of the ST is significantly lower than that of supervised learning with true labels, because the ratio between the norm of the weight and the magnitude of the bias can become significantly large. To overcome the problems in label imbalanced cases, several heuristics are introduced. By numerically analyzing the asymptotic formula, it is demonstrated that with the proposed heuristics, ST can find a classifier whose performance is nearly compatible with supervised learning using true labels even in the presence of significant label imbalance.

相關內容

Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients while preserving data privacy. However, the quest to balance acceleration and stability becomes a significant challenge in FL, especially on the client-side. In this paper, we introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge. FedCAda leverages the Adam algorithm to adjust the correction process of the first moment estimate $m$ and the second moment estimate $v$ on the client-side and aggregate adaptive algorithm parameters on the server-side, aiming to accelerate convergence speed and communication efficiency while ensuring stability and performance. Additionally, we investigate several algorithms incorporating different adjustment functions. This comparative analysis revealed that due to the limited information contained within client models from other clients during the initial stages of federated learning, more substantial constraints need to be imposed on the parameters of the adaptive algorithm. As federated learning progresses and clients gather more global information, FedCAda gradually diminishes the impact on adaptive parameters. These findings provide insights for enhancing the robustness and efficiency of algorithmic improvements. Through extensive experiments on computer vision (CV) and natural language processing (NLP) datasets, we demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance. This work contributes to adaptive algorithms for federated learning, encouraging further exploration.

Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data. One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is. The sample's distance to the decision boundary is a natural measure of predictive uncertainty, but it is often intractable to compute, especially for complex decision boundaries formed in multiclass classification tasks. To address this issue, this paper proposes the {\it least disagree metric} (LDM), defined as the smallest probability of disagreement of the predicted label, and an estimator for LDM proven to be asymptotically consistent under mild assumptions. The estimator is computationally efficient and can be easily implemented for deep learning models using parameter perturbation. The LDM-based active learning is performed by querying unlabeled data with the smallest LDM. Experimental results show that our LDM-based active learning algorithm obtains state-of-the-art overall performance on all considered datasets and deep architectures.

Graph self-supervised learning has sparked a research surge in training informative representations without accessing any labeled data. However, our understanding of graph self-supervised learning remains limited, and the inherent relationships between various self-supervised tasks are still unexplored. Our paper aims to provide a fresh understanding of graph self-supervised learning based on task correlations. Specifically, we evaluate the performance of the representations trained by one specific task on other tasks and define correlation values to quantify task correlations. Through this process, we unveil the task correlations between various self-supervised tasks and can measure their expressive capabilities, which are closely related to downstream performance. By analyzing the correlation values between tasks across various datasets, we reveal the complexity of task correlations and the limitations of existing multi-task learning methods. To obtain more capable representations, we propose Graph Task Correlation Modeling (GraphTCM) to illustrate the task correlations and utilize it to enhance graph self-supervised training. The experimental results indicate that our method significantly outperforms existing methods across various downstream tasks.

Federated learning (FL) is a distributed machine learning paradigm with high efficiency and low communication load, only transmitting parameters or gradients of network. However, the non-independent and identically distributed (Non-IID) data characteristic has a negative impact on this paradigm. Furthermore, the heterogeneity of communication quality will significantly affect the accuracy of parameter transmission, causing a degradation in the performance of the FL system or even preventing its convergence. This letter proposes a dual-segment clustering (DSC) strategy, which first clusters the clients according to the heterogeneous communication conditions and then performs a second clustering by the sample size and label distribution, so as to solve the problem of data and communication heterogeneity. Experimental results show that the DSC strategy proposed in this letter can improve the convergence rate of FL, and has superiority on accuracy in a heterogeneous environment compared with the classical algorithm of cluster.

The principal benefit of unsupervised representation learning is that a pre-trained model can be fine-tuned where data or labels are scarce. Existing approaches for graph representation learning are domain specific, maintaining consistent node and edge features across the pre-training and target datasets. This has precluded transfer to multiple domains. In this work we present Topology Only Pre-Training, a graph pre-training method based on node and edge feature exclusion. Separating graph learning into two stages, topology and features, we use contrastive learning to pre-train models over multiple domains. These models show positive transfer on evaluation datasets from multiple domains, including domains not present in pre-training data. On 75% of experiments, ToP models perform significantly ($P \leq 0.01$) better than a supervised baseline. These results include when node and edge features are used in evaluation, where performance is significantly better on 85.7% of tasks compared to single-domain or non-pre-trained models. We further show that out-of-domain topologies can produce more useful pre-training than in-domain. We show better transfer from non-molecule pre-training, compared to molecule pre-training, on 79% of molecular benchmarks.

Zero-shot anomaly segmentation using pre-trained foundation models is a promising approach that enables effective algorithms without expensive, domain-specific training or fine-tuning. Ensuring that these methods work across various environmental conditions and are robust to distribution shifts is an open problem. We investigate the performance of WinCLIP [14] zero-shot anomaly segmentation algorithm by perturbing test data using three semantic transformations: bounded angular rotations, bounded saturation shifts, and hue shifts. We empirically measure a lower performance bound by aggregating across per-sample worst-case perturbations and find that average performance drops by up to 20% in area under the ROC curve and 40% in area under the per-region overlap curve. We find that performance is consistently lowered on three CLIP backbones, regardless of model architecture or learning objective, demonstrating a need for careful performance evaluation.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Meta-learning has gained wide popularity as a training framework that is more data-efficient than traditional machine learning methods. However, its generalization ability in complex task distributions, such as multimodal tasks, has not been thoroughly studied. Recently, some studies on multimodality-based meta-learning have emerged. This survey provides a comprehensive overview of the multimodality-based meta-learning landscape in terms of the methodologies and applications. We first formalize the definition of meta-learning and multimodality, along with the research challenges in this growing field, such as how to enrich the input in few-shot or zero-shot scenarios and how to generalize the models to new tasks. We then propose a new taxonomy to systematically discuss typical meta-learning algorithms combined with multimodal tasks. We investigate the contributions of related papers and summarize them by our taxonomy. Finally, we propose potential research directions for this promising field.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

北京阿比特科技有限公司