Perfect paradefinite algebras are De Morgan algebras expanded with a perfection (or classicality) operation. They form a variety that is term-equivalent to the variety of involutive Stone algebras. Their associated multiple-conclusion (Set-Set) and single-conclusion (Set-Fmla) order-preserving logics are non-algebraizable self-extensional logics of formal inconsistency and undeterminedness determined by a six-valued matrix, studied in depth by Gomes et al. (2022) from both the algebraic and the proof-theoretical perspectives. We continue hereby that study by investigating directions for conservatively expanding these logics with an implication connective (essentially, one that admits the deduction-detachment theorem). We first consider logics given by very simple and manageable non-deterministic semantics whose implication (in isolation) is classical. These, nevertheless, fail to be self-extensional. We then consider the implication realized by the relative pseudo-complement over the six-valued perfect paradefinite algebra. Our strategy is to expand such algebra with this connective and study the (self-extensional) Set-Set and Set-Fmla order-preserving logics, as well as the T-assertional logics of the variety induced by the new algebra. We provide axiomatizations for such new variety and for such logics, drawing parallels with the class of symmetric Heyting algebras and with Moisil's `symmetric modal logic'. For the Set-Set logic, in particular, the axiomatization we obtain is analytic. We close by studying interpolation properties for these logics and concluding that the new variety has the Maehara amalgamation property.
We discuss single-shot decoding of quantum Calderbank-Shor-Steane codes with faulty syndrome measurements. We state the problem as a joint source-channel coding problem. By adding redundant rows to the code's parity-check matrix we obtain an additional syndrome error correcting code which addresses faulty syndrome measurements. Thereby, the redundant rows are chosen to obtain good syndrome error correcting capabilities while keeping the stabilizer weights low. Optimal joint decoding rules are derived which, though too complex for general codes, can be evaluated for short quantum codes.
The minimum linear ordering problem (MLOP) generalizes well-known combinatorial optimization problems such as minimum linear arrangement and minimum sum set cover. MLOP seeks to minimize an aggregated cost $f(\cdot)$ due to an ordering $\sigma$ of the items (say $[n]$), i.e., $\min_{\sigma} \sum_{i\in [n]} f(E_{i,\sigma})$, where $E_{i,\sigma}$ is the set of items mapped by $\sigma$ to indices $[i]$. Despite an extensive literature on MLOP variants and approximations for these, it was unclear whether the graphic matroid MLOP was NP-hard. We settle this question through non-trivial reductions from mininimum latency vertex cover and minimum sum vertex cover problems. We further propose a new combinatorial algorithm for approximating monotone submodular MLOP, using the theory of principal partitions. This is in contrast to the rounding algorithm by Iwata, Tetali, and Tripathi [ITT2012], using Lov\'asz extension of submodular functions. We show a $(2-\frac{1+\ell_{f}}{1+|E|})$-approximation for monotone submodular MLOP where $\ell_{f}=\frac{f(E)}{\max_{x\in E}f(\{x\})}$ satisfies $1 \leq \ell_f \leq |E|$. Our theory provides new approximation bounds for special cases of the problem, in particular a $(2-\frac{1+r(E)}{1+|E|})$-approximation for the matroid MLOP, where $f = r$ is the rank function of a matroid. We further show that minimum latency vertex cover (MLVC) is $\frac{4}{3}$-approximable, by which we also lower bound the integrality gap of its natural LP relaxation, which might be of independent interest.
Human speakers can generate descriptions of perceptual concepts, abstracted from the instance-level. Moreover, such descriptions can be used by other speakers to learn provisional representations of those concepts. Learning and using abstract perceptual concepts is under-investigated in the language-and-vision field. The problem is also highly relevant to the field of representation learning in multi-modal NLP. In this paper, we introduce a framework for testing category-level perceptual grounding in multi-modal language models. In particular, we train separate neural networks to generate and interpret descriptions of visual categories. We measure the communicative success of the two models with the zero-shot classification performance of the interpretation model, which we argue is an indicator of perceptual grounding. Using this framework, we compare the performance of prototype- and exemplar-based representations. Finally, we show that communicative success exposes performance issues in the generation model, not captured by traditional intrinsic NLG evaluation metrics, and argue that these issues stem from a failure to properly ground language in vision at the category level.
A common way of exposing functionality in contemporary systems is by providing a Web-API based on the REST API architectural guidelines. To describe REST APIs, the industry standard is currently OpenAPI-specifications. Test generation and fuzzing methods targeting OpenAPI-described REST APIs have been a very active research area in recent years. An open research challenge is to aid users in better understanding their API, in addition to finding faults and to cover all the code. In this paper, we address this challenge by proposing a set of behavioural properties, common to REST APIs, which are used to generate examples of behaviours that these APIs exhibit. These examples can be used both (i) to further the understanding of the API and (ii) as a source of automatic test cases. Our evaluation shows that our approach can generate examples deemed relevant for understanding the system and for a source of test generation by practitioners. In addition, we show that basing test generation on behavioural properties provides tests that are less dependent on the state of the system, while at the same time yielding a similar code coverage as state-of-the-art methods in REST API fuzzing in a given time limit.
High sample complexity has long been a challenge for RL. On the other hand, humans learn to perform tasks not only from interaction or demonstrations, but also by reading unstructured text documents, e.g., instruction manuals. Instruction manuals and wiki pages are among the most abundant data that could inform agents of valuable features and policies or task-specific environmental dynamics and reward structures. Therefore, we hypothesize that the ability to utilize human-written instruction manuals to assist learning policies for specific tasks should lead to a more efficient and better-performing agent. We propose the Read and Reward framework. Read and Reward speeds up RL algorithms on Atari games by reading manuals released by the Atari game developers. Our framework consists of a QA Extraction module that extracts and summarizes relevant information from the manual and a Reasoning module that evaluates object-agent interactions based on information from the manual. An auxiliary reward is then provided to a standard A2C RL agent, when interaction is detected. Experimentally, various RL algorithms obtain significant improvement in performance and training speed when assisted by our design.
The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations. Furthermore, we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti curve transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler Characteristic curve transform.
Emerson-Lei conditions have recently attracted attention due to their succinctness and compositionality properties. In the current work, we show how infinite-duration games with Emerson-Lei objectives can be analyzed in two different ways. First, we show that the Zielonka tree of the Emerson-Lei condition gives rise naturally to a new reduction to parity games. This reduction, however, does not result in optimal analysis. Second, we show based on the first reduction (and the Zielonka tree) how to provide a direct fixpoint-based characterization of the winning region. The fixpoint-based characterization allows for symbolic analysis. It generalizes the solutions of games with known winning conditions such as B\"uchi, GR[1], parity, Streett, Rabin and Muller objectives, and in the case of these conditions reproduces previously known symbolic algorithms and complexity results. We also show how the capabilities of the proposed algorithm can be exploited in reactive synthesis, suggesting a new expressive fragment of LTL that can be handled symbolically. Our fragment combines a safety specification and a liveness part. The safety part is unrestricted and the liveness part allows to define Emerson-Lei conditions on occurrences of letters. The symbolic treatment is enabled due to the simplicity of determinization in the case of safety languages and by using our new algorithm for game solving. This approach maximizes the number of steps solved symbolically in order to maximize the potential for efficient symbolic implementations.
The conventional approach to the general Partial Information Decomposition (PID) problem has been redundancy-based: specifying a measure of redundant information between collections of source variables induces a PID via Moebius-Inversion over the so called redundancy lattice. Despite the prevalence of this method, there has been ongoing interest in examining the problem through the lens of different base-concepts of information, such as synergy, unique information, or union information. Yet, a comprehensive understanding of the logical organization of these different based-concepts and their associated PIDs remains elusive. In this work, we apply the mereological formulation of PID that we introduced in a recent paper to shed light on this problem. Within the mereological approach base-concepts can be expressed in terms of conditions phrased in formal logic on the specific parthood relations between the PID components and the different mutual information terms. We set forth a general pattern of these logical conditions of which all PID base-concepts in the literature are special cases and that also reveals novel base-concepts, in particular a concept we call "vulnerable information".
Recommender systems are used to provide relevant suggestions on various matters. Although these systems are a classical research topic, knowledge is still limited regarding the public opinion about these systems. Public opinion is also important because the systems are known to cause various problems. To this end, this paper presents a qualitative analysis of the perceptions of ordinary citizens, civil society groups, businesses, and others on recommender systems in Europe. The dataset examined is based on the answers submitted to a consultation about the Digital Services Act (DSA) recently enacted in the European Union (EU). Therefore, not only does the paper contribute to the pressing question about regulating new technologies and online platforms, but it also reveals insights about the policy-making of the DSA. According to the qualitative results, Europeans have generally negative opinions about recommender systems and the quality of their recommendations. The systems are widely seen to violate privacy and other fundamental rights. According to many Europeans, these also cause various societal problems, including even threats to democracy. Furthermore, existing regulations in the EU are commonly seen to have failed due to a lack of proper enforcement. Numerous suggestions were made by the respondents to the consultation for improving the situation, but only a few of these ended up to the DSA.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.