亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to user demand and recent regulation (GDPR, AI Act), decisions made by AI systems need to be explained. These decisions are often explainable only post hoc, where counterfactual explanations are popular. The question of what constitutes the best counterfactual explanation must consider multiple aspects, where "distance from the sample" is the most common. We argue that this requirement frequently leads to explanations that are unlikely and, therefore, of limited value. Here, we present a system that provides high-likelihood explanations. We show that the search for the most likely explanations satisfying many common desiderata for counterfactual explanations can be modeled using mixed-integer optimization (MIO). In the process, we propose an MIO formulation of a Sum-Product Network (SPN) and use the SPN to estimate the likelihood of a counterfactual, which can be of independent interest. A numerical comparison against several methods for generating counterfactual explanations is provided.

相關內容

Recent years have witnessed significant advancement in face recognition (FR) techniques, with their applications widely spread in people's lives and security-sensitive areas. There is a growing need for reliable interpretations of decisions of such systems. Existing studies relying on various mechanisms have investigated the usage of saliency maps as an explanation approach, but suffer from different limitations. This paper first explores the spatial relationship between face image and its deep representation via gradient backpropagation. Then a new explanation approach FGGB has been conceived, which provides precise and insightful similarity and dissimilarity saliency maps to explain the "Accept" and "Reject" decision of an FR system. Extensive visual presentation and quantitative measurement have shown that FGGB achieves superior performance in both similarity and dissimilarity maps when compared to current state-of-the-art explainable face verification approaches.

We propose a multi-agent system that enables groups of agents to collaborate and work autonomously to execute tasks. Groups can work in a decentralized manner and can adapt to dynamic changes in the environment. Groups of agents solve assigned tasks by exploring the solution space cooperatively based on the highest reward first. The tasks have a dependency structure associated with them. We rigorously evaluated the performance of the system and the individual group performance using centralized and decentralized control approaches for task distribution. Based on the results, the centralized approach is more efficient for systems with a less-dependent system $G_{18}$, while the decentralized approach performs better for systems with a highly-dependent system $G_{40}$. We also evaluated task allocation to groups that do not have interdependence. Our findings reveal that there was significantly less difference in the number of tasks allocated to each group in a less-dependent system than in a highly-dependent one. The experimental results showed that a large number of small-size cooperative groups of agents unequivocally improved the system's performance compared to a small number of large-size cooperative groups of agents. Therefore, it is essential to identify the optimal group size for a system to enhance its performance.

Ensuring safety in Reinforcement Learning (RL), typically framed as a Constrained Markov Decision Process (CMDP), is crucial for real-world exploration applications. Current approaches in handling CMDP struggle to balance optimality and feasibility, as direct optimization methods cannot ensure state-wise in-training safety, and projection-based methods correct actions inefficiently through lengthy iterations. To address these challenges, we propose Adaptive Chance-constrained Safeguards (ACS), an adaptive, model-free safe RL algorithm using the safety recovery rate as a surrogate chance constraint to iteratively ensure safety during exploration and after achieving convergence. Theoretical analysis indicates that the relaxed probabilistic constraint sufficiently guarantees forward invariance to the safe set. And extensive experiments conducted on both simulated and real-world safety-critical tasks demonstrate its effectiveness in enforcing safety (nearly zero-violation) while preserving optimality (+23.8%), robustness, and fast response in stochastic real-world settings.

Cyber threats continue to evolve in complexity, thereby traditional Cyber Threat Intelligence (CTI) methods struggle to keep pace. AI offers a potential solution, automating and enhancing various tasks, from data ingestion to resilience verification. This paper explores the potential of integrating Artificial Intelligence (AI) into CTI. We provide a blueprint of an AI-enhanced CTI processing pipeline, and detail its components and functionalities. The pipeline highlights the collaboration of AI and human expertise, which is necessary to produce timely and high-fidelity cyber threat intelligence. We also explore the automated generation of mitigation recommendations, harnessing AI's capabilities to provide real-time, contextual, and predictive insights. However, the integration of AI into CTI is not without challenges. Thereby, we discuss ethical dilemmas, potential biases, and the imperative for transparency in AI-driven decisions. We address the need for data privacy, consent mechanisms, and the potential misuse of technology. Moreover, we highlights the importance of addressing biases both during CTI analysis and AI models warranting their transparency and interpretability. Lastly, our work points out future research directions such as the exploration of advanced AI models to augment cyber defences, and the human-AI collaboration optimization. Ultimately, the fusion of AI with CTI appears to hold significant potential in cybersecurity domain.

We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov-Galerkin-type variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while the test space is a finite-dimensional vector space. Whereas the VPINN's loss depends upon the selected basis functions of a given test space, herein, we minimize a loss based on the discrete dual norm of the residual. The main advantage of such a loss definition is that it provides a reliable and efficient estimator of the true error in the energy norm under the assumption of the existence of a local Fortin operator. We test the performance and robustness of our algorithm in several advection-diffusion problems. These numerical results perfectly align with our theoretical findings, showing that our estimates are sharp.

Mobile Manipulation (MoMa) systems incorporate the benefits of mobility and dexterity, due to the enlarged space in which they can move and interact with their environment. However, even when equipped with onboard sensors, e.g., an embodied camera, extracting task-relevant visual information in unstructured and cluttered environments, such as households, remains challenging. In this work, we introduce an active perception pipeline for mobile manipulators to generate motions that are informative toward manipulation tasks, such as grasping in unknown, cluttered scenes. Our proposed approach, ActPerMoMa, generates robot paths in a receding horizon fashion by sampling paths and computing path-wise utilities. These utilities trade-off maximizing the visual Information Gain (IG) for scene reconstruction and the task-oriented objective, e.g., grasp success, by maximizing grasp reachability. We show the efficacy of our method in simulated experiments with a dual-arm TIAGo++ MoMa robot performing mobile grasping in cluttered scenes with obstacles. We empirically analyze the contribution of various utilities and parameters, and compare against representative baselines both with and without active perception objectives. Finally, we demonstrate the transfer of our mobile grasping strategy to the real world, indicating a promising direction for active-perceptive MoMa.

We describe a class of tasks called decision-oriented dialogues, in which AI assistants must collaborate with one or more humans via natural language to help them make complex decisions. We formalize three domains in which users face everyday decisions: (1) choosing an assignment of reviewers to conference papers, (2) planning a multi-step itinerary in a city, and (3) negotiating travel plans for a group of friends. In each of these settings, AI assistants and users have disparate abilities that they must combine to arrive at the best decision: assistants can access and process large amounts of information, while users have preferences and constraints external to the system. For each task, we build a dialogue environment where agents receive a reward based on the quality of the final decision they reach. Using these environments, we collect human-human dialogues with humans playing the role of assistant. To compare how current AI assistants communicate in these settings, we present baselines using large language models in self-play. Finally, we highlight a number of challenges models face in decision-oriented dialogues, ranging from efficient communication to reasoning and optimization, and release our environments as a testbed for future modeling work.

Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.

For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司