Explainable AI (XAI) aims to answer ethical and legal questions associated with the deployment of AI models. However, a considerable number of domain-specific reviews highlight the need of a mathematical foundation for the key notions in the field, considering that even the term "explanation" still lacks a precise definition. These reviews also advocate for a sound and unifying formalism for explainable AI, to avoid the emergence of ill-posed questions, and to help researchers navigate a rapidly growing body of knowledge. To the authors knowledge, this paper is the first attempt to fill this gap by formalizing a unifying theory of XAI. Employing the framework of category theory, and feedback monoidal categories in particular, we first provide formal definitions for all essential terms in explainable AI. Then we propose a taxonomy of the field following the proposed structure, showing how the introduced theory can be used to categorize all the main classes of XAI systems currently studied in literature. In summary, the foundation of XAI proposed in this paper represents a significant tool to properly frame future research lines, and a precious guidance for new researchers approaching the field.
The rapid advancement of artificial intelligence (AI) such as the emergence of large language models including ChatGPT and DALLE 2 has brought both opportunities for improving productivity and raised ethical concerns. This paper investigates the ethics of using artificial intelligence (AI) in cartography, with a particular focus on the generation of maps using DALLE 2. To accomplish this, we first create an open-sourced dataset that includes synthetic (AI-generated) and real-world (human-designed) maps at multiple scales with a variety settings. We subsequently examine four potential ethical concerns that may arise from the characteristics of DALLE 2 generated maps, namely inaccuracies, misleading information, unanticipated features, and reproducibility. We then develop a deep learning-based ethical examination system that identifies those AI-generated maps. Our research emphasizes the importance of ethical considerations in the development and use of AI techniques in cartography, contributing to the growing body of work on trustworthy maps. We aim to raise public awareness of the potential risks associated with AI-generated maps and support the development of ethical guidelines for their future use.
Behavioural metrics provide a quantitative refinement of classical two-valued behavioural equivalences on systems with quantitative data, such as metric or probabilistic transition systems. In analogy to the classical linear-time/branching-time spectrum of two-valued behavioural equivalences on transition systems, behavioural metrics come in various degrees of granularity, depending on the observer's ability to interact with the system. Graded monads have been shown to provide a unifying framework for spectra of behavioural equivalences. Here, we transfer this principle to spectra of behavioural metrics, working at a coalgebraic level of generality, that is, parametrically in the system type. In the ensuing development of quantitative graded semantics, we discuss presentations of graded monads on the category of metric spaces in terms of graded quantitative equational theories. Moreover, we obtain a canonical generic notion of invariant real-valued modal logic, and provide criteria for such logics to be expressive in the sense that logical distance coincides with the respective behavioural distance. We thus recover recent expressiveness results for coalgebraic branching-time metrics and for trace distance in metric transition systems; moreover, we obtain a new expressiveness result for trace semantics of fuzzy transition systems. We also provide a number of salient negative results. In particular, we show that trace distance on probabilistic metric transition systems does not admit a characteristic real-valued modal logic at all.
The current study focuses on systematically analyzing the recent advances in the field of Multimodal eXplainable Artificial Intelligence (MXAI). In particular, the relevant primary prediction tasks and publicly available datasets are initially described. Subsequently, a structured presentation of the MXAI methods of the literature is provided, taking into account the following criteria: a) The number of the involved modalities, b) The stage at which explanations are produced, and c) The type of the adopted methodology (i.e. mathematical formalism). Then, the metrics used for MXAI evaluation are discussed. Finally, a comprehensive analysis of current challenges and future research directions is provided.
Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.
Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
Deep learning methods are achieving ever-increasing performance on many artificial intelligence tasks. A major limitation of deep models is that they are not amenable to interpretability. This limitation can be circumvented by developing post hoc techniques to explain the predictions, giving rise to the area of explainability. Recently, explainability of deep models on images and texts has achieved significant progress. In the area of graph data, graph neural networks (GNNs) and their explainability are experiencing rapid developments. However, there is neither a unified treatment of GNN explainability methods, nor a standard benchmark and testbed for evaluations. In this survey, we provide a unified and taxonomic view of current GNN explainability methods. Our unified and taxonomic treatments of this subject shed lights on the commonalities and differences of existing methods and set the stage for further methodological developments. To facilitate evaluations, we generate a set of benchmark graph datasets specifically for GNN explainability. We summarize current datasets and metrics for evaluating GNN explainability. Altogether, this work provides a unified methodological treatment of GNN explainability and a standardized testbed for evaluations.
Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.