亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A crucial step towards the 6th generation (6G) of networks would be a shift in communication paradigm beyond the limits of Shannon's theory. In both classical and quantum Shannon's information theory, communication channels are generally assumed to combine through classical trajectories, so that the associated network path traversed by the information carrier is well-defined. Counter-intuitively, quantum mechanics enables a quantum information carrier to propagate through a quantum path, i.e., through a path such that the causal order of the constituting communications channels becomes indefinite. Quantum paths exhibit astonishing features, such as providing non-null capacity even when no information can be sent through any classical path. In this paper, we study the quantum capacity achievable via a quantum path and establish upper and the lower bounds for it. Our findings reveal the substantial advantage achievable with a quantum path over any classical placements of communications channels in terms of ultimate achievable communication rates. Furthermore, we identify the region where a quantum path incontrovertibly outperforms the amount of transmissible information beyond the limits of conventional quantum Shannon's theory, and we quantify this advantage over classical paths through a conservative estimate.

相關內容

The quantum perceptron, the variational circuit, and the Grover algorithm have been proposed as promising components for quantum machine learning. This paper presents a new quantum perceptron that combines the quantum variational circuit and the Grover algorithm. However, this does not guarantee that this quantum variational perceptron with Grover's algorithm (QVPG) will have any advantage over its quantum variational (QVP) and classical counterparts. Here, we examine the performance of QVP and QVP-G by computing their loss function and analyzing their accuracy on the classification task, then comparing these two quantum models to the classical perceptron (CP). The results show that our two quantum models are more efficient than CP, and our novel suggested model QVP-G outperforms the QVP, demonstrating that the Grover can be applied to the classification task and even makes the model more accurate, besides the unstructured search problems.

Bangladesh, situated in the foothills of the Himalayas in South Asia, is a nation characterized by its extensive river network. This riverine state comprises various features such as small hill ranges, meandering seasonal creeks, muddy canals, picturesque rivers, their tributaries, and branching streams. Numerous cities and ports have been established along both sides of these rivers, forming an inseparable connection to the country's civilization and agricultural system. These waterways serve as vital channels for communication and transportation of goods due to their easy accessibility and cost-effectiveness. In Bangladesh, waterway accidents have been a persistent issue. Every year, a significant number of people suffer injuries, fatalities, or go missing due to shipping accidents. While major naval accidents briefly generate public outcry and prompt investigations by the media and authorities, this study aims to examine accident data spanning from 1995 to 2019. The goal is to identify the primary factors contributing to these accidents using multiple linear regression theory in various mathematical combinations. The model's accuracy is validated using different datasets. Additionally, this study delves into the identification of accident-prone areas and the temporal distribution of accidents, offering a comprehensive understanding of accident occurrences. The findings of this research will aid stakeholders and authorities in making informed decisions to prevent waterway accidents. Furthermore, the study presents recommendations focused on accident path planning and avoidance, as well as establishing a theoretical foundation for driver assistance systems.

It has been argued that semantic systems reflect pressure for efficiency, and a current debate concerns the cultural evolutionary process that produces this pattern. We consider efficiency as instantiated in the Information Bottleneck (IB) principle, and a model of cultural evolution that combines iterated learning and communication. We show that this model, instantiated in neural networks, converges to color naming systems that are efficient in the IB sense and similar to human color naming systems. We also show that iterated learning alone, and communication alone, do not yield the same outcome as clearly.

Advances in networks, accelerators, and cloud services encourage programmers to reconsider where to compute -- such as when fast networks make it cost-effective to compute on remote accelerators despite added latency. Workflow and cloud-hosted serverless computing frameworks can manage multi-step computations spanning federated collections of cloud, high-performance computing (HPC), and edge systems, but passing data among computational steps via cloud storage can incur high costs. Here, we overcome this obstacle with a new programming paradigm that decouples control flow from data flow by extending the pass-by-reference model to distributed applications. We describe ProxyStore, a system that implements this paradigm by providing object proxies that act as wide-area object references with just-in-time resolution. This proxy model enables data producers to communicate data unilaterally, transparently, and efficiently to both local and remote consumers. We demonstrate the benefits of this model with synthetic benchmarks and real-world scientific applications, running across various computing platforms.

Satellite communication constitutes a promising solution for the sixth generation (6G) wireless networks in terms of providing global communication services. In order to provide a cost-effective satellite network, we propose a novel medium-earth-orbit (MEO) satellite aided integrated-navigation-and-communication (INAC) network. To overcome the severe path loss of MEO satellites, we conceive a network for simultaneous serving navigation and communication for ground users by adopting the non-orthogonal multiple access (NOMA) technique and the reconfigurable intelligent surface technique. Based on the power allocation strategies, communication-oriented (CO-) and navigation-oriented (NO-) INAC scenarios are proposed. We first derive the closed-form expressions for the new channel statistics, outage probability and channel capacity of the INAC-user. For gleaning further insights, the diversity orders and navigation accuracy are evaluated for illustrating the performance of the INAC networks. According to our analysis, when RIS elements are sufficient, the proposed INAC network can perform better than conventional terrestrial communication networks in terms of channel capacity. Numerical results are provided for confirming that the NO-INAC and CO-INAC scenarios have superior performance for communication in the low signal-to-noise-ratio (SNR) regimes and high SNR regimes, respectively, which indicates a hybrid CO/NO-INAC network is preferable.

Quality-Diversity (QD) algorithms have recently gained traction as optimisation methods due to their effectiveness at escaping local optima and capability of generating wide-ranging and high-performing solutions. Recently, Multi-Objective MAP-Elites (MOME) extended the QD paradigm to the multi-objective setting by maintaining a Pareto front in each cell of a map-elites grid. MOME achieved a global performance that competed with NSGA-II and SPEA2, two well-established Multi-Objective Evolutionary Algorithms (MOEA), while also acquiring a diverse repertoire of solutions. However, MOME is limited by non-directed genetic search mechanisms which struggle in high-dimensional search spaces. In this work, we present Multi-Objective MAP-Elites with Policy-Gradient Assistance and Crowding-based Exploration (MOME-PGX): a new QD algorithm that extends MOME to improve its data efficiency and performance. MOME-PGX uses gradient-based optimisation to efficiently drive solutions towards higher performance. It also introduces crowding-based mechanisms to create an improved exploration strategy and to encourage uniformity across Pareto fronts. We evaluate MOME-PGX in four simulated robot locomotion tasks and demonstrate that it converges faster and to a higher performance than all other baselines. We show that MOME-PGX is between 4.3 and 42 times more data-efficient than MOME and doubles the performance of MOME, NSGA-II and SPEA2 in challenging environments.

We study the information-theoretic limits of joint communication and sensing when the sensing task is modeled as the estimation of a discrete channel state fixed during the transmission of an entire codeword. This setting captures scenarios in which the time scale over which sensing happens is significantly slower than the time scale over which symbol transmission occurs. The tradeoff between communication and sensing then takes the form of a tradeoff region between the rate of reliable communication and the state detection-error exponent. We investigate such tradeoffs for both mono-static and bi-static scenarios, in which the sensing task is performed at the transmitter or receiver, respectively. In the mono-static case, we develop an exact characterization of the tradeoff in open-loop, when the sensing is not used to assist the communication. We also show the strict improvement brought by a closed-loop operation, in which the sensing informs the communication. In the bi-static case, we develop an achievable tradeoff region that highlights the fundamentally different nature of the bi-static scenario. Specifically, the rate of communication plays a key role in the characterization of the tradeoff and we show how joint strategies, which simultaneously estimate message and state, outperform successive strategies, which only estimate the state after decoding the transmitted message.

Diffusion models (DM) can gradually learn to remove noise, which have been widely used in artificial intelligence generated content (AIGC) in recent years. The property of DM for removing noise leads us to wonder whether DM can be applied to wireless communications to help the receiver eliminate the channel noise. To address this, we propose channel denoising diffusion models (CDDM) for wireless communications in this paper. CDDM can be applied as a new physical layer module after the channel equalization to learn the distribution of the channel input signal, and then utilizes this learned knowledge to remove the channel noise. We design corresponding training and sampling algorithms for the forward diffusion process and the reverse sampling process of CDDM. Moreover, we apply CDDM to a semantic communications system based on joint source-channel coding (JSCC). Experimental results demonstrate that CDDM can further reduce the mean square error (MSE) after minimum mean square error (MMSE) equalizer, and the joint CDDM and JSCC system achieves better performance than the JSCC system and the traditional JPEG2000 with low-density parity-check (LDPC) code approach.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

北京阿比特科技有限公司