亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we address the problem of system identification and control of a front-steered vehicle which abides by the Ackermann geometry constraints. This problem arises naturally for on-road and off-road vehicles that require reliable system identification and basic feedback controllers for various applications such as lane keeping and way-point navigation. Traditional system identification requires expensive equipment and is time consuming. In this work we explore the use of differentiable physics for system identification and controller design and make the following contributions: i)We develop a differentiable physics simulator (DPS) to provide a method for the system identification of front-steered class of vehicles whose system parameters are learned using a gradient-based method; ii) We provide results for our gradient-based method that exhibit better sample efficiency in comparison to other gradient-free methods; iii) We validate the learned system parameters by implementing a feedback controller to demonstrate stable lane keeping performance on a real front-steered vehicle, the F1TENTH; iv) Further, we provide results exhibiting comparable lane keeping behavior for system parameters learned using our gradient-based method with lane keeping behavior of the actual system parameters of the F1TENTH.

相關內容

In this work, we consider a fundamental task in quantum many-body physics - finding and learning ground states of quantum Hamiltonians and their properties. Recent works have studied the task of predicting the ground state expectation value of sums of geometrically local observables by learning from data. For short-range gapped Hamiltonians, a sample complexity that is logarithmic in the number of qubits and quasipolynomial in the error was obtained. Here we extend these results beyond the local requirements on both Hamiltonians and observables, motivated by the relevance of long-range interactions in molecular and atomic systems. For interactions decaying as a power law with exponent greater than twice the dimension of the system, we recover the same efficient logarithmic scaling with respect to the number of qubits, but the dependence on the error worsens to exponential. Further, we show that learning algorithms equivariant under the automorphism group of the interaction hypergraph achieve a sample complexity reduction, leading in particular to a constant number of samples for learning sums of local observables in systems with periodic boundary conditions. We demonstrate the efficient scaling in practice by learning from DMRG simulations of $1$D long-range and disordered systems with up to $128$ qubits. Finally, we provide an analysis of the concentration of expectation values of global observables stemming from central limit theorem, resulting in increased prediction accuracy.

With the increasing demand for mobile robots and autonomous vehicles, several approaches for long-term robot navigation have been proposed. Among these techniques, ground segmentation and traversability estimation play important roles in perception and path planning, respectively. Even though these two techniques appear similar, their objectives are different. Ground segmentation divides data into ground and non-ground elements; thus, it is used as a preprocessing stage to extract objects of interest by rejecting ground points. In contrast, traversability estimation identifies and comprehends areas in which robots can move safely. Nevertheless, some researchers use these terms without clear distinction, leading to misunderstanding the two concepts. Therefore, in this study, we survey related literature and clearly distinguish ground and traversable regions considering four aspects: a) maneuverability of robot platforms, b) position of a robot in the surroundings, c) subset relation of negative obstacles, and d) subset relation of deformable objects.

With the advancement of Internet of Things (IoT) technology, its applications span various sectors such as public, industrial, private and military. In particular, the drone sector has gained significant attention for both commercial and military purposes. As a result, there has been a surge in research focused on vulnerability analysis of drones. However, most security research to mitigate threats to IoT devices has focused primarily on networks, firmware and mobile applications. Of these, the use of fuzzing to analyse the security of firmware requires emulation of the firmware. However, when it comes to drone firmware, the industry lacks emulation and automated fuzzing tools. This is largely due to challenges such as limited input interfaces, firmware encryption and signatures. While it may be tempting to assume that existing emulators and automated analysers for IoT devices can be applied to drones, practical applications have proven otherwise. In this paper, we discuss the challenges of dynamically analysing drone firmware and propose potential solutions. In addition, we demonstrate the effectiveness of our methodology by applying it to DJI drones, which have the largest market share.

In this paper, we propose the use of self-supervised pretraining on a large unlabelled data set to improve the performance of a personalized voice activity detection (VAD) model in adverse conditions. We pretrain a long short-term memory (LSTM)-encoder using the autoregressive predictive coding (APC) framework and fine-tune it for personalized VAD. We also propose a denoising variant of APC, with the goal of improving the robustness of personalized VAD. The trained models are systematically evaluated on both clean speech and speech contaminated by various types of noise at different SNR-levels and compared to a purely supervised model. Our experiments show that self-supervised pretraining not only improves performance in clean conditions, but also yields models which are more robust to adverse conditions compared to purely supervised learning.

In this paper, we present approximate distance and shortest-path oracles for fault-tolerant Euclidean spanners motivated by the routing problem in real-world road networks. An $f$-fault-tolerant Euclidean $t$-spanner for a set $V$ of $n$ points in $\mathbb{R}^d$ is a graph $G=(V,E)$ where, for any two points $p$ and $q$ in $V$ and a set $F$ of $f$ vertices of $V$, the distance between $p$ and $q$ in $G-F$ is at most $t$ times their Euclidean distance. Given an $f$-fault-tolerant Euclidean $t$-spanner $G$ with $O(n)$ edges and a constant $\varepsilon$, our data structure has size $O_{t,f}(n\log n)$, and this allows us to compute an $(1+\varepsilon)$-approximate distance in $G-F$ between $s$ and $s'$ can be computed in constant time for any two vertices $s$ and $s'$ and a set $F$ of $f$ failed vertices. Also, with a data structure of size $O_{t,f}(n\log n\log\log n)$, we can compute an $(1+\varepsilon)$-approximate shortest path in $G-F$ between $s$ and $s'$ in $O_{t,f}(\log^2 n\log\log n+\textsf{sol})$ time for any two vertices $s$ and $s'$ and a set $F$ of failed vertices, where $\textsf{sol}$ denotes the number of vertices in the returned path.

In this paper, we consider enumeration of geodesics on a polyhedron, where a geodesic means locally-shortest path between two points. Particularly, we consider the following preprocessing problem: given a point $s$ on a polyhedral surface and a positive real number $r$, to build a data structure that enables, for any point $t$ on the surface, to enumerate all geodesics from $s$ to $t$ whose length is less than $r$. First, we present a naive algorithm by removing the trimming process from the MMP algorithm (1987). Next, we present an improved algorithm which is practically more efficient on a non-convex polyhedron, in terms of preprocessing time and memory consumption. Moreover, we introduce a single-pair geodesic graph to succinctly encode a result of geodesic query. Lastly, we compare these naive and improved algorithms by some computer experiments.

In this paper, we propose a cell-free scheme for unmanned aerial vehicle (UAV) base stations (BSs) to manage the severe intercell interference between terrestrial users and UAV-BSs of neighboring cells. Since the cell-free scheme requires enormous bandwidth for backhauling, we propose to use the sub-terahertz (sub-THz) band for the backhaul links between UAV-BSs and central processing unit (CPU). Also, because the sub-THz band requires a reliable line-of-sight link, we propose to use a high altitude platform station (HAPS) as a CPU. At the first time-slot of the proposed scheme, users send their messages to UAVs at the sub-6 GHz band. The UAVs then apply match-filtering and power allocation. At the second time-slot, at each UAV, orthogonal resource blocks are allocated for each user at the sub-THz band, and the signals are sent to the HAPS after analog beamforming. In the HAPS receiver, after analog beamforming, the message of each user is decoded. We formulate an optimization problem that maximizes the minimum signal-to-interference-plus-noise ratio of users by finding the optimum allocated power as well as the optimum locations of UAVs. Simulation results demonstrate the superiority of the proposed scheme compared with aerial cellular and terrestrial cell-free baseline schemes.

In this paper, we present a comprehensive evaluation to establish a robust and efficient framework for Lagrangian-based particle tracing using deep neural networks (DNNs). Han et al. (2021) first proposed a DNN-based approach to learn Lagrangian representations and demonstrated accurate particle tracing for an analytic 2D flow field. In this paper, we extend and build upon this prior work in significant ways. First, we evaluate the performance of DNN models to accurately trace particles in various settings, including 2D and 3D time-varying flow fields, flow fields from multiple applications, flow fields with varying complexity, as well as structured and unstructured input data. Second, we conduct an empirical study to inform best practices with respect to particle tracing model architectures, activation functions, and training data structures. Third, we conduct a comparative evaluation against prior techniques that employ flow maps as input for exploratory flow visualization. Specifically, we compare our extended model against its predecessor by Han et al. (2021), as well as the conventional approach that uses triangulation and Barycentric coordinate interpolation. Finally, we consider the integration and adaptation of our particle tracing model with different viewers. We provide an interactive web-based visualization interface by leveraging the efficiencies of our framework, and perform high-fidelity interactive visualization by integrating it with an OSPRay-based viewer. Overall, our experiments demonstrate that using a trained DNN model to predict new particle trajectories requires a low memory footprint and results in rapid inference. Following the best practices for large 3D datasets, our deep learning approach is shown to require approximately 46 times less memory while being more than 400 times faster than the conventional methods.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司