Multi-objective Bayesian optimization aims to find the Pareto front of optimal trade-offs between a set of expensive objectives while collecting as few samples as possible. In some cases, it is possible to evaluate the objectives separately, and a different latency or evaluation cost can be associated with each objective. This presents an opportunity to learn the Pareto front faster by evaluating the cheaper objectives more frequently. We propose a scalarization based knowledge gradient acquisition function which accounts for the different evaluation costs of the objectives. We prove consistency of the algorithm and show empirically that it significantly outperforms a benchmark algorithm which always evaluates both objectives.
The paper introduces the DIverse MultiPLEx Generalized Dot Product Graph (DIMPLE-GDPG) network model where all layers of the network have the same collection of nodes and follow the Generalized Dot Product Graph (GDPG) model. In addition, all layers can be partitioned into groups such that the layers in the same group are embedded in the same ambient subspace but otherwise all matrices of connection probabilities can be different. In a common particular case, where layers of the network follow the Stochastic Block Model (SBM), this setting implies that the groups of layers have common community structures but all matrices of block connection probabilities can be different. We refer to this version as the DIMPLE model. While the DIMPLE-GDPG model generalizes the COmmon Subspace Independent Edge (COSIE) random graph model developed in \cite{JMLR:v22:19-558}, the DIMPLE model includes a wide variety of SBM-equipped multilayer network models as its particular cases. In the paper, we introduce novel algorithms for the recovery of similar groups of layers, for the estimation of the ambient subspaces in the groups of layers in the DIMPLE-GDPG setting, and for the within-layer clustering in the case of the DIMPLE model. We study the accuracy of those algorithms, both theoretically and via computer simulations. The advantages of the new models are demonstrated using real data examples.
The Black-Scholes (B-S) equation has been recently extended as a kind of tempered time-fractional B-S equations, which become an interesting mathematical model in option pricing. In this study, we provide a fast numerical method to approximate the solution of the tempered time-fractional B-S model. To achieve high-order accuracy in space and overcome the weak initial singularity of the solution, we combine the compact operator with a tempered L1 approximation with nonuniform time steps to yield the numerical scheme. The convergence of the proposed difference scheme is proved to be unconditionally stable. Moreover, the kernel function in tempered Caputo fractional derivative is approximated by sum-of-exponentials, which leads to a fast unconditional stable compact difference method that reduces the computational cost. Finally, numerical results demonstrate the effectiveness of the proposed methods.
Machine learning models are critically susceptible to evasion attacks from adversarial examples. Generally, adversarial examples, modified inputs deceptively similar to the original input, are constructed under whitebox settings by adversaries with full access to the model. However, recent attacks have shown a remarkable reduction in query numbers to craft adversarial examples using blackbox attacks. Particularly, alarming is the ability to exploit the classification decision from the access interface of a trained model provided by a growing number of Machine Learning as a Service providers including Google, Microsoft, IBM and used by a plethora of applications incorporating these models. The ability of an adversary to exploit only the predicted label from a model to craft adversarial examples is distinguished as a decision-based attack. In our study, we first deep dive into recent state-of-the-art decision-based attacks in ICLR and SP to highlight the costly nature of discovering low distortion adversarial employing gradient estimation methods. We develop a robust query efficient attack capable of avoiding entrapment in a local minimum and misdirection from noisy gradients seen in gradient estimation methods. The attack method we propose, RamBoAttack, exploits the notion of Randomized Block Coordinate Descent to explore the hidden classifier manifold, targeting perturbations to manipulate only localized input features to address the issues of gradient estimation methods. Importantly, the RamBoAttack is more robust to the different sample inputs available to an adversary and the targeted class. Overall, for a given target class, RamBoAttack is demonstrated to be more robust at achieving a lower distortion within a given query budget. We curate our extensive results using the large-scale high-resolution ImageNet dataset and open-source our attack, test samples and artifacts on GitHub.
To facilitate widespread adoption of automated engineering design techniques, existing methods must become more efficient and generalizable. In the field of topology optimization, this requires the coupling of modern optimization methods with solvers capable of handling arbitrary problems. In this work, a topology optimization method for general multiphysics problems is presented. We leverage a convolutional neural parameterization of a level set for a description of the geometry and use this in an unfitted finite element method that is differentiable with respect to the level set everywhere in the domain. We construct the parameter to objective map in such a way that the gradient can be computed entirely by automatic differentiation at roughly the cost of an objective function evaluation. The method produces optimized topologies that are similar in performance yet exhibit greater regularity than baseline approaches on standard benchmarks whilst having the ability to solve a more general class of problems, e.g., interface-coupled multiphysics.
Multi-objective reinforcement learning (MORL) algorithms tackle sequential decision problems where agents may have different preferences over (possibly conflicting) reward functions. Such algorithms often learn a set of policies (each optimized for a particular agent preference) that can later be used to solve problems with novel preferences. We introduce a novel algorithm that uses Generalized Policy Improvement (GPI) to define principled, formally-derived prioritization schemes that improve sample-efficient learning. They implement active-learning strategies by which the agent can (i) identify the most promising preferences/objectives to train on at each moment, to more rapidly solve a given MORL problem; and (ii) identify which previous experiences are most relevant when learning a policy for a particular agent preference, via a novel Dyna-style MORL method. We prove our algorithm is guaranteed to always converge to an optimal solution in a finite number of steps, or an $\epsilon$-optimal solution (for a bounded $\epsilon$) if the agent is limited and can only identify possibly sub-optimal policies. We also prove that our method monotonically improves the quality of its partial solutions while learning. Finally, we introduce a bound that characterizes the maximum utility loss (with respect to the optimal solution) incurred by the partial solutions computed by our method throughout learning. We empirically show that our method outperforms state-of-the-art MORL algorithms in challenging multi-objective tasks, both with discrete and continuous state and action spaces.
This paper addresses the problem of constrained multi-objective optimization over black-box objective functions with practitioner-specified preferences over the objectives when a large fraction of the input space is infeasible (i.e., violates constraints). This problem arises in many engineering design problems including analog circuits and electric power system design. Our overall goal is to approximate the optimal Pareto set over the small fraction of feasible input designs. The key challenges include the huge size of the design space, multiple objectives and large number of constraints, and the small fraction of feasible input designs which can be identified only after performing expensive simulations. We propose a novel and efficient preference-aware constrained multi-objective Bayesian optimization approach referred to as PAC-MOO to address these challenges. The key idea is to learn surrogate models for both output objectives and constraints, and select the candidate input for evaluation in each iteration that maximizes the information gained about the optimal constrained Pareto front while factoring in the preferences over objectives. Our experiments on two real-world analog circuit design optimization problems demonstrate the efficacy of PAC-MOO over prior methods.
When dealing with deep neural network (DNN) applications on edge devices, continuously updating the model is important. Although updating a model with real incoming data is ideal, using all of them is not always feasible due to limits, such as labeling and communication costs. Thus, it is necessary to filter and select the data to use for training (i.e., active learning) on the device. In this paper, we formalize a practical active learning problem for DNNs on edge devices and propose a general task-agnostic framework to tackle this problem, which reduces it to a stream submodular maximization. This framework is light enough to be run with low computational resources, yet provides solutions whose quality is theoretically guaranteed thanks to the submodular property. Through this framework, we can configure data selection criteria flexibly, including using methods proposed in previous active learning studies. We evaluate our approach on both classification and object detection tasks in a practical setting to simulate a real-life scenario. The results of our study show that the proposed framework outperforms all other methods in both tasks, while running at a practical speed on real devices.
Several fundamental problems in science and engineering consist of global optimization tasks involving unknown high-dimensional (black-box) functions that map a set of controllable variables to the outcomes of an expensive experiment. Bayesian Optimization (BO) techniques are known to be effective in tackling global optimization problems using a relatively small number objective function evaluations, but their performance suffers when dealing with high-dimensional outputs. To overcome the major challenge of dimensionality, here we propose a deep learning framework for BO and sequential decision making based on bootstrapped ensembles of neural architectures with randomized priors. Using appropriate architecture choices, we show that the proposed framework can approximate functional relationships between design variables and quantities of interest, even in cases where the latter take values in high-dimensional vector spaces or even infinite-dimensional function spaces. In the context of BO, we augmented the proposed probabilistic surrogates with re-parameterized Monte Carlo approximations of multiple-point (parallel) acquisition functions, as well as methodological extensions for accommodating black-box constraints and multi-fidelity information sources. We test the proposed framework against state-of-the-art methods for BO and demonstrate superior performance across several challenging tasks with high-dimensional outputs, including a constrained optimization task involving shape optimization of rotor blades in turbo-machinery.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.