We study the properties of nonparametric least squares regression using deep neural networks. We derive non-asymptotic upper bounds for the prediction error of the empirical risk minimizer of feedforward deep neural regression. Our error bounds achieve minimax optimal rate and significantly improve over the existing ones in the sense that they depend polynomially on the dimension of the predictor, instead of exponentially on dimension. We show that the neural regression estimator can circumvent the curse of dimensionality under the assumption that the predictor is supported on an approximate low-dimensional manifold or a set with low Minkowski dimension. We also establish the optimal convergence rate under the exact manifold support assumption. We investigate how the prediction error of the neural regression estimator depends on the structure of neural networks and propose a notion of network relative efficiency between two types of neural networks, which provides a quantitative measure for evaluating the relative merits of different network structures. To establish these results, we derive a novel approximation error bound for the H\"older smooth functions with a positive smoothness index using ReLU activated neural networks, which may be of independent interest. Our results are derived under weaker assumptions on the data distribution and the neural network structure than those in the existing literature.
Numerical predictions of quantities of interest measured within physical systems rely on the use of mathematical models that should be validated, or at best, not invalidated. Model validation usually involves the comparison of experimental data (outputs from the system of interest) and model predictions, both obtained at a specific validation scenario. The design of this validation experiment should be directly relevant to the objective of the model, that of predicting a quantity of interest at a prediction scenario. In this paper, we address two specific issues arising when designing validation experiments. The first issue consists in determining an appropriate validation scenario in cases where the prediction scenario cannot be carried out in a controlled environment. The second issue concerns the selection of observations when the quantity of interest cannot be readily observed. The proposed methodology involves the computation of influence matrices that characterize the response surface of given model functionals. Minimization of the distance between influence matrices allow one for selecting a validation experiment most representative of the prediction scenario. We illustrate our approach on two numerical examples. The first example considers the validation of a simple model based on an ordinary differential equation governing an object in free fall to put in evidence the importance of the choice of the validation experiment. The second numerical experiment focuses on the transport of a pollutant and demonstrates the impact that the choice of the quantity of interest has on the validation experiment to be performed.
We explore the features of two methods of stabilization, aggregation and supremizer methods, for reduced-order modeling of parametrized optimal control problems. In both methods, the reduced basis spaces are augmented to guarantee stability. For the aggregation method, the reduced basis approximation spaces for the state and adjoint variables are augmented in such a way that the spaces are identical. For the supremizer method, the reduced basis approximation space for the state-control product space is augmented with the solutions of a supremizer equation. We implement both of these methods for solving several parametrized control problems and assess their performance. Results indicate that the number of reduced basis vectors needed to approximate the solution space to some tolerance with the supremizer method is much larger, possibly double, that for aggregation. There are also some cases where the supremizer method fails to produce a converged solution. We present results to compare the accuracy, efficiency, and computational costs associated with both methods of stabilization which suggest that stabilization by aggregation is a superior stabilization method for control problems.
We study online learning problems in which a decision maker wants to maximize their expected reward without violating a finite set of $m$ resource constraints. By casting the learning process over a suitably defined space of strategy mixtures, we recover strong duality on a Lagrangian relaxation of the underlying optimization problem, even for general settings with non-convex reward and resource-consumption functions. Then, we provide the first best-of-many-worlds type framework for this setting, with no-regret guarantees under stochastic, adversarial, and non-stationary inputs. Our framework yields the same regret guarantees of prior work in the stochastic case. On the other hand, when budgets grow at least linearly in the time horizon, it allows us to provide a constant competitive ratio in the adversarial case, which improves over the best known upper bound bound of $O(\log m \log T)$. Moreover, our framework allows the decision maker to handle non-convex reward and cost functions. We provide two game-theoretic applications of our framework to give further evidence of its flexibility. In doing so, we show that it can be employed to implement budget-pacing mechanisms in repeated first-price auctions.
In a task where many similar inverse problems must be solved, evaluating costly simulations is impractical. Therefore, replacing the model $y$ with a surrogate model $y_s$ that can be evaluated quickly leads to a significant speedup. The approximation quality of the surrogate model depends strongly on the number, position, and accuracy of the sample points. With an additional finite computational budget, this leads to a problem of (computer) experimental design. In contrast to the selection of sample points, the trade-off between accuracy and effort has hardly been studied systematically. We therefore propose an adaptive algorithm to find an optimal design in terms of position and accuracy. Pursuing a sequential design by incrementally appending the computational budget leads to a convex and constrained optimization problem. As a surrogate, we construct a Gaussian process regression model. We measure the global approximation error in terms of its impact on the accuracy of the identified parameter and aim for a uniform absolute tolerance, assuming that $y_s$ is computed by finite element calculations. A priori error estimates and a coarse estimate of computational effort relate the expected improvement of the surrogate model error to computational effort, resulting in the most efficient combination of sample point and evaluation tolerance. We also allow for improving the accuracy of already existing sample points by continuing previously truncated finite element solution procedures.
Various privacy-preserving frameworks that respect the individual's privacy in the analysis of data have been developed in recent years. However, available model classes such as simple statistics or generalized linear models lack the flexibility required for a good approximation of the underlying data-generating process in practice. In this paper, we propose an algorithm for a distributed, privacy-preserving, and lossless estimation of generalized additive mixed models (GAMM) using component-wise gradient boosting (CWB). Making use of CWB allows us to reframe the GAMM estimation as a distributed fitting of base learners using the $L_2$-loss. In order to account for the heterogeneity of different data location sites, we propose a distributed version of a row-wise tensor product that allows the computation of site-specific (smooth) effects. Our adaption of CWB preserves all the important properties of the original algorithm, such as an unbiased feature selection and the feasibility to fit models in high-dimensional feature spaces, and yields equivalent model estimates as CWB on pooled data. Next to a derivation of the equivalence of both algorithms, we also showcase the efficacy of our algorithm on a distributed heart disease data set and compare it with state-of-the-art methods.
In this paper, we establish novel data-dependent upper bounds on the generalization error through the lens of a "variable-size compressibility" framework that we introduce newly here. In this framework, the generalization error of an algorithm is linked to a variable-size 'compression rate' of its input data. This is shown to yield bounds that depend on the empirical measure of the given input data at hand, rather than its unknown distribution. Our new generalization bounds that we establish are tail bounds, tail bounds on the expectation, and in-expectations bounds. Moreover, it is shown that our framework also allows to derive general bounds on any function of the input data and output hypothesis random variables. In particular, these general bounds are shown to subsume and possibly improve over several existing PAC-Bayes and data-dependent intrinsic dimension-based bounds that are recovered as special cases, thus unveiling a unifying character of our approach. For instance, a new data-dependent intrinsic dimension based bounds is established, which connects the generalization error to the optimization trajectories and reveals various interesting connections with rate-distortion dimension of process, R\'enyi information dimension of process, and metric mean dimension.
This paper combines modern numerical computation with theoretical results to improve our understanding of the growth factor problem for Gaussian elimination. On the computational side we obtain lower bounds for the maximum growth for complete pivoting for $n=1:75$ and $n=100$ using the Julia JuMP optimization package. At $n=100$ we obtain a growth factor bigger than $3n$. The numerical evidence suggests that the maximum growth factor is bigger than $n$ if and only if $n \ge 11$. We also present a number of theoretical results. We show that the maximum growth factor over matrices with entries restricted to a subset of the reals is nearly equal to the maximum growth factor over all real matrices. We also show that the growth factors under floating point arithmetic and exact arithmetic are nearly identical. Finally, through numerical search, and stability and extrapolation results, we provide improved lower bounds for the maximum growth factor. Specifically, we find that the largest growth factor is bigger than $1.0045n$, and the lim sup of the ratio with $n$ is greater than or equal to $3.317$. In contrast to the old conjecture that growth might never be bigger than $n$, it seems likely that the maximum growth divided by $n$ goes to infinity as $n \rightarrow \infty$.
Many conventional learning algorithms rely on loss functions other than the natural 0-1 loss for computational efficiency and theoretical tractability. Among them are approaches based on absolute loss (L1 regression) and square loss (L2 regression). The first is proved to be an \textit{agnostic} PAC learner for various important concept classes such as \textit{juntas}, and \textit{half-spaces}. On the other hand, the second is preferable because of its computational efficiency, which is linear in the sample size. However, PAC learnability is still unknown as guarantees have been proved only under distributional restrictions. The question of whether L2 regression is an agnostic PAC learner for 0-1 loss has been open since 1993 and yet has to be answered. This paper resolves this problem for the junta class on the Boolean cube -- proving agnostic PAC learning of k-juntas using L2 polynomial regression. Moreover, we present a new PAC learning algorithm based on the Boolean Fourier expansion with lower computational complexity. Fourier-based algorithms, such as Linial et al. (1993), have been used under distributional restrictions, such as uniform distribution. We show that with an appropriate change, one can apply those algorithms in agnostic settings without any distributional assumption. We prove our results by connecting the PAC learning with 0-1 loss to the minimum mean square estimation (MMSE) problem. We derive an elegant upper bound on the 0-1 loss in terms of the MMSE error and show that the sign of the MMSE is a PAC learner for any concept class containing it.
This work considers Gaussian process interpolation with a periodized version of the Mat{\'e}rn covariance function introduced by Stein (22, Section 6.7). Convergence rates are studied for the joint maximum likelihood estimation of the regularity and the amplitude parameters when the data is sampled according to the model. The mean integrated squared error is also analyzed with fixed and estimated parameters, showing that maximum likelihood estimation yields asymptotically the same error as if the ground truth was known. Finally, the case where the observed function is a fixed deterministic element of a Sobolev space of continuous functions is also considered, suggesting that bounding assumptions on some parameters can lead to different estimates.
When training overparameterized deep networks for classification tasks, it has been widely observed that the learned features exhibit a so-called "neural collapse" phenomenon. More specifically, for the output features of the penultimate layer, for each class the within-class features converge to their means, and the means of different classes exhibit a certain tight frame structure, which is also aligned with the last layer's classifier. As feature normalization in the last layer becomes a common practice in modern representation learning, in this work we theoretically justify the neural collapse phenomenon for normalized features. Based on an unconstrained feature model, we simplify the empirical loss function in a multi-class classification task into a nonconvex optimization problem over the Riemannian manifold by constraining all features and classifiers over the sphere. In this context, we analyze the nonconvex landscape of the Riemannian optimization problem over the product of spheres, showing a benign global landscape in the sense that the only global minimizers are the neural collapse solutions while all other critical points are strict saddles with negative curvature. Experimental results on practical deep networks corroborate our theory and demonstrate that better representations can be learned faster via feature normalization.