亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In a task where many similar inverse problems must be solved, evaluating costly simulations is impractical. Therefore, replacing the model $y$ with a surrogate model $y_s$ that can be evaluated quickly leads to a significant speedup. The approximation quality of the surrogate model depends strongly on the number, position, and accuracy of the sample points. With an additional finite computational budget, this leads to a problem of (computer) experimental design. In contrast to the selection of sample points, the trade-off between accuracy and effort has hardly been studied systematically. We therefore propose an adaptive algorithm to find an optimal design in terms of position and accuracy. Pursuing a sequential design by incrementally appending the computational budget leads to a convex and constrained optimization problem. As a surrogate, we construct a Gaussian process regression model. We measure the global approximation error in terms of its impact on the accuracy of the identified parameter and aim for a uniform absolute tolerance, assuming that $y_s$ is computed by finite element calculations. A priori error estimates and a coarse estimate of computational effort relate the expected improvement of the surrogate model error to computational effort, resulting in the most efficient combination of sample point and evaluation tolerance. We also allow for improving the accuracy of already existing sample points by continuing previously truncated finite element solution procedures.

相關內容

機器學習系統設計系統評估標準

Regression can be really difficult in case of big datasets, since we have to dealt with huge volumes of data. The demand of computational resources for the modeling process increases as the scale of the datasets does, since traditional approaches for regression involve inverting huge data matrices. The main problem relies on the large data size, and so a standard approach is subsampling that aims at obtaining the most informative portion of the big data. In the current paper we consider an approach based on leverages scores, already existing in the current literature. The aforementioned approach proposed in order to select subdata for linear model discrimination. However, we highlight its importance on the selection of data points that are the most informative for estimating unknown parameters. We conclude that the approach based on leverage scores improves existing approaches, providing simulation experiments as well as a real data application.

Machine learning methods are increasingly used to build computationally inexpensive surrogates for complex physical models. The predictive capability of these surrogates suffers when data are noisy, sparse, or time-dependent. As we are interested in finding a surrogate that provides valid predictions of any potential future model evaluations, we introduce an online learning method empowered by optimizer-driven sampling. The method has two advantages over current approaches. First, it ensures that all turning points on the model response surface are included in the training data. Second, after any new model evaluations, surrogates are tested and "retrained" (updated) if the "score" drops below a validity threshold. Tests on benchmark functions reveal that optimizer-directed sampling generally outperforms traditional sampling methods in terms of accuracy around local extrema, even when the scoring metric favors overall accuracy. We apply our method to simulations of nuclear matter to demonstrate that highly accurate surrogates for the nuclear equation of state can be reliably auto-generated from expensive calculations using a few model evaluations.

Piecewise constant curvature is a popular kinematics framework for continuum robots. Computing the model parameters from the desired end pose, known as the inverse kinematics problem, is fundamental in manipulation, tracking and planning tasks. In this paper, we propose an efficient multi-solution solver to address the inverse kinematics problem of 3-section constant-curvature robots by bridging both the theoretical reduction and numerical correction. We derive analytical conditions to simplify the original problem into a one-dimensional problem. Further, the equivalence of the two problems is formalised. In addition, we introduce an approximation with bounded error so that the one dimension becomes traversable while the remaining parameters analytically solvable. With the theoretical results, the global search and numerical correction are employed to implement the solver. The experiments validate the better efficiency and higher success rate of our solver than the numerical methods when one solution is required, and demonstrate the ability of obtaining multiple solutions with optimal path planning in a space with obstacles.

This paper studies the high-dimensional quantile regression problem under the transfer learning framework, where possibly related source datasets are available to make improvements on the estimation or prediction based solely on the target data. In the oracle case with known transferable sources, a smoothed two-step transfer learning algorithm based on convolution smoothing is proposed and the L1/L2 estimation error bounds of the corresponding estimator are also established. To avoid including non-informative sources, we propose to select the transferable sources adaptively and establish its selection consistency under regular conditions. Monte Carlo simulations as well as an empirical analysis of gene expression data demonstrate the effectiveness of the proposed procedure.

Integer linear programming models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work develops the first standalone local search solver for general integer linear programming validated on a large heterogeneous problem dataset. We propose a local search framework that switches in three modes, namely Search, Improve, and Restore modes, and design tailored operators adapted to different modes, thus improve the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances.

The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [ICALP '19]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of $1-1/e-\epsilon$ and both generalize and accelerate the results of Ene and Nguyen [ICALP '19]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondr\'ak [SODA '14]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel FREEZE operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [TALG '05] that maintains the maximum weight basis under insertions and deletions of elements in $O(\log n)$ time. For the transversal matroid the FREEZE operation corresponds to requiring the data structure to keep a certain set $S$ of vertices matched, a property that we call $S$-stability.

Previous methods solve feature matching and pose estimation using a two-stage process by first finding matches and then estimating the pose. As they ignore the geometric relationships between the two tasks, they focus on either improving the quality of matches or filtering potential outliers, leading to limited efficiency or accuracy. In contrast, we propose an iterative matching and pose estimation framework (IMP) leveraging the geometric connections between the two tasks: a few good matches are enough for a roughly accurate pose estimation; a roughly accurate pose can be used to guide the matching by providing geometric constraints. To this end, we implement a geometry-aware recurrent attention-based module which jointly outputs sparse matches and camera poses. Specifically, for each iteration, we first implicitly embed geometric information into the module via a pose-consistency loss, allowing it to predict geometry-aware matches progressively. Second, we introduce an \textbf{e}fficient IMP, called EIMP, to dynamically discard keypoints without potential matches, avoiding redundant updating and significantly reducing the quadratic time complexity of attention computation in transformers. Experiments on YFCC100m, Scannet, and Aachen Day-Night datasets demonstrate that the proposed method outperforms previous approaches in terms of accuracy and efficiency.

Discrete Differential Equations (DDEs) are functional equations that relate polynomially a power series $F(t,u)$ in $t$ with polynomial coefficients in a "catalytic" variable $u$ and the specializations, say at $u=1$, of $F(t,u)$ and of some of its partial derivatives in $u$. DDEs occur frequently in combinatorics, especially in map enumeration. If a DDE is of fixed-point type then its solution $F(t,u)$ is unique, and a general result by Popescu (1986) implies that $F(t,u)$ is an algebraic power series. Constructive proofs of algebraicity for solutions of fixed-point type DDEs were proposed by Bousquet-M\'elou and Jehanne (2006). Bostan et. al (2022) initiated a systematic algorithmic study of such DDEs of order 1. We generalize this study to DDEs of arbitrary order. First, we propose nontrivial extensions of algorithms based on polynomial elimination and on the guess-and-prove paradigm. Second, we design two brand-new algorithms that exploit the special structure of the underlying polynomial systems. Last, but not least, we report on implementations that are able to solve highly challenging DDEs with a combinatorial origin.

There has been a recent surge in statistical methods for handling the lack of adequate positivity when using inverse probability weights (IPW). However, these nascent developments have raised a number of questions. Thus, we demonstrate the ability of equipoise estimators (overlap, matching, and entropy weights) to handle the lack of positivity. Compared to IPW, the equipoise estimators have been shown to be flexible and easy to interpret. However, promoting their wide use requires that researchers know clearly why, when to apply them and what to expect. In this paper, we provide the rationale to use these estimators to achieve robust results. We specifically look into the impact imbalances in treatment allocation can have on the positivity and, ultimately, on the estimates of the treatment effect. We zero into the typical pitfalls of the IPW estimator and its relationship with the estimators of the average treatment effect on the treated (ATT) and on the controls (ATC). Furthermore, we also compare IPW trimming to the equipoise estimators. We focus particularly on two key points: What fundamentally distinguishes their estimands? When should we expect similar results? Our findings are illustrated through Monte-Carlo simulation studies and a data example on healthcare expenditure.

The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.

北京阿比特科技有限公司