亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We define rewinding operators that invert quantum measurements. Then, we define complexity classes ${\sf RwBQP}$, ${\sf CBQP}$, and ${\sf AdPostBQP}$ as sets of decision problems solvable by polynomial-size quantum circuits with a polynomial number of rewinding operators, cloning operators, and adaptive postselections, respectively. Our main result is that ${\sf BPP}^{\sf PP}\subseteq{\sf RwBQP}={\sf CBQP}={\sf AdPostBQP}\subseteq{\sf PSPACE}$. As a byproduct of this result, we show that any problem in ${\sf PostBQP}$ can be solved with only postselections of outputs whose probabilities are polynomially close to one. Under the strongly believed assumption that ${\sf BQP}\nsupseteq{\sf SZK}$, or the shortest independent vectors problem cannot be efficiently solved with quantum computers, we also show that a single rewinding operator is sufficient to achieve tasks that are intractable for quantum computation. In addition, we consider rewindable Clifford and instantaneous quantum polynomial time circuits.

相關內容

量子計算是一種遵循量子力學規律調控量子信息單元進行計算的新型計算模式。對照于傳統的通用計算機,其理論模型是通用圖靈機;通用的量子計算機,其理論模型是用量子力學規律重新詮釋的通用圖靈機。從可計算的問題來看,量子計算機只能解決傳統計算機所能解決的問題,但是從計算的效率上,由于量子力學疊加性的存在,目前某些已知的量子算法在處理問題時速度要快于傳統的通用計算機。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

For positive integers $d$ and $p$ such that $d \ge p$, we obtain complete asymptotic expansions, for large $d$, of the normalizing constants for the matrix Bingham and matrix Langevin distributions on Stiefel manifolds. The accuracy of each truncated expansion is strictly increasing in $d$; also, for sufficiently large $d$, the accuracy is strictly increasing in $m$, the number of terms in the truncated expansion. We apply these results to obtain the rate of convergence of these asymptotic expansions if both $d, p \to \infty$. Using values of $d$ and $p$ arising in various data sets, we illustrate the rate of convergence of the truncated approximations as $d$ or $m$ increases. These results extend our recent work on asymptotic expansions for the normalizing constants of the high-dimensional Bingham distributions.

Let $\alpha$ and $\beta$ belong to the same quadratic field. We show that the inhomogeneous Beatty sequence $(\lfloor n \alpha + \beta \rfloor)_{n \geq 1}$ is synchronized, in the sense that there is a finite automaton that takes as input the Ostrowski representations of $n$ and $y$ in parallel, and accepts if and only if $y = \lfloor n \alpha + \beta \rfloor$. Since it is already known that the addition relation is computable for Ostrowski representations based on a quadratic number, a consequence is a new and rather simple proof that the first-order logical theory of these sequences with addition is decidable. The decision procedure is easily implemented in the free software Walnut. As an application, we show that for each $r \geq 1$ it is decidable whether the set $\{ \lfloor n \alpha + \beta \rfloor \, : \, n \geq 1 \}$ forms an additive basis (or asymptotic additive basis) of order $r$. Using our techniques, we also solve some open problems of Reble and Kimberling, and give an explicit characterization of a sequence of Hildebrand et al.

Quantum devices use qubits to represent information, which allows them to exploit important properties from quantum physics, specifically superposition and entanglement. As a result, quantum computers have the potential to outperform the most advanced classical computers. In recent years, quantum algorithms have shown hints of this promise, and many algorithms have been proposed for the quantum domain. There are two key hurdles to solving difficult real-world problems on quantum computers. The first is on the hardware front -- the number of qubits in the most advanced quantum systems is too small to make the solution of large problems practical. The second involves the algorithms themselves -- as quantum computers use qubits, the algorithms that work there are fundamentally different from those that work on traditional computers. As a result of these constraints, research has focused on developing approaches to solve small versions of problems as proofs of concept -- recognizing that it would be possible to scale these up once quantum devices with enough qubits become available. Our objective in this paper is along the same lines. We present a quantum approach to solve a well-studied problem in the context of data sharing. This heuristic uses the well-known Quantum Approximate Optimization Algorithm (QAOA). We present results on experiments involving small datasets to illustrate how the problem could be solved using quantum algorithms. The results show that the method has potential and provide answers close to optimal. At the same time, we realize there are opportunities for improving the method further.

In this work, we address the problem of approximate pattern matching with wildcards. Given a pattern $P$ of length $m$ containing $D$ wildcards, a text $T$ of length $n$, and an integer $k$, our objective is to identify all fragments of $T$ within Hamming distance $k$ from $P$. Our primary contribution is an algorithm with runtime $O(n+(D+k)(G+k)\cdot n/m)$ for this problem. Here, $G \le D$ represents the number of maximal wildcard fragments in $P$. We derive this algorithm by elaborating in a non-trivial way on the ideas presented by [Charalampopoulos et al., FOCS'20] for pattern matching with mismatches (without wildcards). Our algorithm improves over the state of the art when $D$, $G$, and $k$ are small relative to $n$. For instance, if $m = n/2$, $k=G=n^{2/5}$, and $D=n^{3/5}$, our algorithm operates in $O(n)$ time, surpassing the $\Omega(n^{6/5})$ time requirement of all previously known algorithms. In the case of exact pattern matching with wildcards ($k=0$), we present a much simpler algorithm with runtime $O(n+DG\cdot n/m)$ that clearly illustrates our main technical innovation: the utilisation of positions of $P$ that do not belong to any fragment of $P$ with a density of wildcards much larger than $D/m$ as anchors for the sought (approximate) occurrences. Notably, our algorithm outperforms the best-known $O(n\log m)$-time FFT-based algorithms of [Cole and Hariharan, STOC'02] and [Clifford and Clifford, IPL'04] if $DG = o(m\log m)$. We complement our algorithmic results with a structural characterization of the $k$-mismatch occurrences of $P$. We demonstrate that in a text of length $O(m)$, these occurrences can be partitioned into $O((D+k)(G+k))$ arithmetic progressions. Additionally, we construct an infinite family of examples with $\Omega((D+k)k)$ arithmetic progressions of occurrences, leveraging a combinatorial result on progression-free sets [Elkin, SODA'10].

Leaky-integrate-and-fire (LIF) is studied as a non-linear operator that maps an integrable signal $f$ to a sequence $\eta_f$ of discrete events, the spikes. In the case without any Dirac pulses in the input, it makes no difference whether to set the neuron's potential to zero or to subtract the threshold $\vartheta$ immediately after a spike triggering event. However, in the case of superimpose Dirac pulses the situation is different which raises the question of a mathematical justification of each of the proposed reset variants. In the limit case of zero refractory time the standard reset scheme based on threshold subtraction results in a modulo-based reset scheme which allows to characterize LIF as a quantization operator based on a weighted Alexiewicz norm $\|.\|_{A, \alpha}$ with leaky parameter $\alpha$. We prove the quantization formula $\|\eta_f - f\|_{A, \alpha} < \vartheta$ under the general condition of local integrability, almost everywhere boundedness and locally finitely many superimposed weighted Dirac pulses which provides a much larger signal space and more flexible sparse signal representation than manageable by classical signal processing.

We study the problem of symmetric matrix completion, where the goal is to reconstruct a positive semidefinite matrix $\rm{X}^\star \in \mathbb{R}^{d\times d}$ of rank-$r$, parameterized by $\rm{U}\rm{U}^{\top}$, from only a subset of its observed entries. We show that the vanilla gradient descent (GD) with small initialization provably converges to the ground truth $\rm{X}^\star$ without requiring any explicit regularization. This convergence result holds true even in the over-parameterized scenario, where the true rank $r$ is unknown and conservatively over-estimated by a search rank $r'\gg r$. The existing results for this problem either require explicit regularization, a sufficiently accurate initial point, or exact knowledge of the true rank $r$. In the over-parameterized regime where $r'\geq r$, we show that, with $\widetilde\Omega(dr^9)$ observations, GD with an initial point $\|\rm{U}_0\| \leq \epsilon$ converges near-linearly to an $\epsilon$-neighborhood of $\rm{X}^\star$. Consequently, smaller initial points result in increasingly accurate solutions. Surprisingly, neither the convergence rate nor the final accuracy depends on the over-parameterized search rank $r'$, and they are only governed by the true rank $r$. In the exactly-parameterized regime where $r'=r$, we further enhance this result by proving that GD converges at a faster rate to achieve an arbitrarily small accuracy $\epsilon>0$, provided the initial point satisfies $\|\rm{U}_0\| = O(1/d)$. At the crux of our method lies a novel weakly-coupled leave-one-out analysis, which allows us to establish the global convergence of GD, extending beyond what was previously possible using the classical leave-one-out analysis.

A nearest neighbor representation of a Boolean function $f$ is a set of vectors (anchors) labeled by $0$ or $1$ such that $f(\vec{x}) = 1$ if and only if the closest anchor to $x$ is labeled by $1$. This model was introduced by Hajnal, Liu, and Tur\'an (2022), who studied bounds on the number of anchors required to represent Boolean functions under different choices of anchors (real vs. Boolean vectors) as well as the more expressive model of $k$-nearest neighbors. We initiate the study of the representational power of nearest and $k$-nearest neighbors through Boolean circuit complexity. To this end, we establish a connection between Boolean functions with polynomial nearest neighbor complexity and those that can be efficiently represented by classes based on linear inequalities -- min-plus polynomial threshold functions -- previously studied in relation to threshold circuits. This extends an observation of Hajnal et al. (2022). We obtain exponential lower bounds on the $k$-nearest neighbors complexity of explicit $n$-variate functions, assuming $k \leq n^{1-\epsilon}$. Previously, no superlinear lower bound was known for any $k>1$. Next, we further extend the connection between nearest neighbor representations and circuits to the $k$-nearest neighbors case. As a result, we show that proving superpolynomial lower bounds for the $k$-nearest neighbors complexity of an explicit function for arbitrary $k$ would require a breakthrough in circuit complexity. In addition, we prove an exponential separation between the nearest neighbor and $k$-nearest neighbors complexity (for unrestricted $k$) of an explicit function. These results address questions raised by Hajnal et al. (2022) of proving strong lower bounds for $k$-nearest neighbors and understanding the role of the parameter $k$. Finally, we devise new bounds on the nearest neighbor complexity for several explicit functions.

Cai and Hemachandra used iterative constant-setting to prove that Few $\subseteq$ $\oplus$P (and thus that FewP $\subseteq$ $\oplus$P). In this paper, we note that there is a tension between the nondeterministic ambiguity of the class one is seeking to capture, and the density (or, to be more precise, the needed "nongappy"-ness) of the easy-to-find "targets" used in iterative constant-setting. In particular, we show that even less restrictive gap-size upper bounds regarding the targets allow one to capture ambiguity-limited classes. Through a flexible, metatheorem-based approach, we do so for a wide range of classes including the logarithmic-ambiguity version of Valiant's unambiguous nondeterminism class UP. Our work lowers the bar for what advances regarding the existence of infinite, P-printable sets of primes would suffice to show that restricted counting classes based on the primes have the power to accept superconstant-ambiguity analogues of UP. As an application of our work, we prove that the Lenstra-Pomerance-Wagstaff Conjecture implies that all (O(1) + loglogn)-ambiguity NP sets are in the restricted counting class $\rm RC_{PRIMES}$.

A 2-packing set for an undirected graph $G=(V,E)$ is a subset $\mathcal{S} \subset V$ such that any two vertices $v_1,v_2 \in \mathcal{S}$ have no common neighbors. Finding a 2-packing set of maximum cardinality is a NP-hard problem. We develop a new approach to solve this problem on arbitrary graphs using its close relation to the independent set problem. Thereby, our algorithm red2pack uses new data reduction rules specific to the 2-packing set problem as well as a graph transformation. Our experiments show that we outperform the state-of-the-art for arbitrary graphs with respect to solution quality and also are able to compute solutions multiple orders of magnitude faster than previously possible. For example, we are able to solve 63% of the graphs in the tested data set to optimality in less than a second while the competitor for arbitrary graphs can only solve 5% of these graphs to optimality even with a 10 hour time limit. Moreover, our approach can solve a wide range of large instances that have previously been unsolved.

The Sibson and Arimoto capacity, which are based on the Sibson and Arimoto mutual information (MI) of order {\alpha}, respectively, are well-known generalizations of the channel capacity C. In this study, we derive novel alternating optimization algorithms for computing these capacities by providing new variational characterizations of the Sibson MI and Arimoto MI. Moreover, we prove that all iterative algorithms for computing these capacities are equivalent under appropriate conditions imposed on their initial distributions.

北京阿比特科技有限公司