Pattern discovery plays a central role in both descriptive and predictive tasks across multiple domains. Actionable patterns must meet rigorous statistical significance criteria and, in the presence of target variables, further uphold discriminative power. Our work addresses the underexplored area of guiding pattern discovery by integrating statistical significance and discriminative power criteria into state-of-the-art algorithms while preserving pattern quality. We also address how pattern quality thresholds, imposed by some algorithms, can be rectified to accommodate these additional criteria. To test the proposed methodology, we select the triclustering task as the guiding pattern discovery case and extend well-known greedy and multi-objective optimization triclustering algorithms, $\delta$-Trimax and TriGen, that use various pattern quality criteria, such as Mean Squared Residual (MSR), Least Squared Lines (LSL), and Multi Slope Measure (MSL). Results from three case studies show the role of the proposed methodology in discovering patterns with pronounced improvements of discriminative power and statistical significance without quality deterioration, highlighting its importance in supervisedly guiding the search. Although the proposed methodology is motivated over multivariate time series data, it can be straightforwardly extended to pattern discovery tasks involving multivariate, N-way (N>3), transactional, and sequential data structures. Availability: The code is freely available at //github.com/JupitersMight/MOF_Triclustering under the MIT license.
Real-world sequential decision making is characterized by sparse rewards and large decision spaces, posing significant difficulty for experiential learning systems like $\textit{tabula rasa}$ reinforcement learning (RL) agents. Large Language Models (LLMs), with a wealth of world knowledge, can help RL agents learn quickly and adapt to distribution shifts. In this work, we introduce Language Guided Exploration (LGE) framework, which uses a pre-trained language model (called GUIDE ) to provide decision-level guidance to an RL agent (called EXPLORER). We observe that on ScienceWorld (Wang et al.,2022), a challenging text environment, LGE outperforms vanilla RL agents significantly and also outperforms other sophisticated methods like Behaviour Cloning and Text Decision Transformer.
Representation learning plays a crucial role in automated feature selection, particularly in the context of high-dimensional data, where non-parametric methods often struggle. In this study, we focus on supervised learning scenarios where the pertinent information resides within a lower-dimensional linear subspace of the data, namely the multi-index model. If this subspace were known, it would greatly enhance prediction, computation, and interpretation. To address this challenge, we propose a novel method for linear feature learning with non-parametric prediction, which simultaneously estimates the prediction function and the linear subspace. Our approach employs empirical risk minimisation, augmented with a penalty on function derivatives, ensuring versatility. Leveraging the orthogonality and rotation invariance properties of Hermite polynomials, we introduce our estimator, named RegFeaL. By utilising alternative minimisation, we iteratively rotate the data to improve alignment with leading directions and accurately estimate the relevant dimension in practical settings. We establish that our method yields a consistent estimator of the prediction function with explicit rates. Additionally, we provide empirical results demonstrating the performance of RegFeaL in various experiments.
Product search plays an essential role in eCommerce. It was treated as a special type of information retrieval problem. Most existing works make use of historical data to improve the search performance, which do not take the opportunity to ask for user's current interest directly. Some session-aware methods take the user's clicks within the session as implicit feedback, but it is still just a guess on user's preference. To address this problem, recent conversational or question-based search models interact with users directly for understanding the user's interest explicitly. However, most users do not have a clear picture on what to buy at the initial stage. Asking critical attributes that the user is looking for after they explored for a while should be a more efficient way to help them searching for the target items. In this paper, we propose a dual-learning model that hybrids the best from both implicit session feedback and proactively clarifying with users on the most critical questions. We first establish a novel utility score to measure whether a clicked item provides useful information for finding the target. Then we develop the dual Selection Net and Ranking Net for choosing the critical questions and ranking the items. It innovatively links traditional click-stream data and text-based questions together. To verify our proposal, we did extensive experiments on a public dataset, and our model largely outperformed other state-of-the-art methods.
Accurate real-time traffic state forecasting plays a pivotal role in traffic control research. In particular, the CIRCLES consortium project necessitates predictive techniques to mitigate the impact of data source delays. After the success of the MegaVanderTest experiment, this paper aims at overcoming the current system limitations and develop a more suited approach to improve the real-time traffic state estimation for the next iterations of the experiment. In this paper, we introduce the SA-LSTM, a deep forecasting method integrating Self-Attention (SA) on the spatial dimension with Long Short-Term Memory (LSTM) yielding state-of-the-art results in real-time mesoscale traffic forecasting. We extend this approach to multi-step forecasting with the n-step SA-LSTM, which outperforms traditional multi-step forecasting methods in the trade-off between short-term and long-term predictions, all while operating in real-time.
Most models for weakly supervised video anomaly detection (WS-VAD) rely on multiple instance learning, aiming to distinguish normal and abnormal snippets without specifying the type of anomaly. The ambiguous nature of anomaly definitions across contexts introduces bias in detecting abnormal and normal snippets within the abnormal bag. Taking the first step to show the model why it is anomalous, a novel framework is proposed to guide the learning of suspected anomalies from event prompts. Given a textual prompt dictionary of potential anomaly events and the captions generated from anomaly videos, the semantic anomaly similarity between them could be calculated to identify the suspected anomalous events for each video snippet. It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos, as well as provides a new way to label pseudo anomalies for self-training. To demonstrate effectiveness, comprehensive experiments and detailed ablation studies are conducted on four datasets, namely XD-Violence, UCF-Crime, TAD, and ShanghaiTech. Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC (82.6\%, 87.7\%, 93.1\%, and 97.4\%). Furthermore, it shows promising performance in open-set and cross-dataset cases.
Diabetic retinopathy (DR) is a leading global cause of blindness. Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss. However, the unique characteristics of hard exudates, ranging from their inconsistent shapes to indistinct boundaries, pose significant challenges to existing segmentation techniques. To address these issues, we present a novel supervised contrastive learning framework to optimize hard exudate segmentation. Specifically, we introduce a patch-wise density contrasting scheme to distinguish between areas with varying lesion concentrations, and therefore improve the model's proficiency in segmenting small lesions. To handle the ambiguous boundaries, we develop a discriminative edge inspection module to dynamically analyze the pixels that lie around the boundaries and accurately delineate the exudates. Upon evaluation using the IDRiD dataset and comparison with state-of-the-art frameworks, our method exhibits its effectiveness and shows potential for computer-assisted hard exudate detection. The code to replicate experiments is available at github.com/wetang7/HECL/.
Recent advancements have underscored the impact of deep learning techniques on multivariate time series forecasting (MTSF). Generally, these techniques are bifurcated into two categories: Channel-independence and Channel-mixing approaches. Although Channel-independence methods typically yield better results, Channel-mixing could theoretically offer improvements by leveraging inter-variable correlations. Nonetheless, we argue that the integration of uncorrelated information in channel-mixing methods could curtail the potential enhancement in MTSF model performance. To substantiate this claim, we introduce the Cross-variable Decorrelation Aware feature Modeling (CDAM) for Channel-mixing approaches, aiming to refine Channel-mixing by minimizing redundant information between channels while enhancing relevant mutual information. Furthermore, we introduce the Temporal correlation Aware Modeling (TAM) to exploit temporal correlations, a step beyond conventional single-step forecasting methods. This strategy maximizes the mutual information between adjacent sub-sequences of both the forecasted and target series. Combining CDAM and TAM, our novel framework significantly surpasses existing models, including those previously considered state-of-the-art, in comprehensive tests.
Denoising diffusion models represent a recent emerging topic in computer vision, demonstrating remarkable results in the area of generative modeling. A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage. In the forward diffusion stage, the input data is gradually perturbed over several steps by adding Gaussian noise. In the reverse stage, a model is tasked at recovering the original input data by learning to gradually reverse the diffusion process, step by step. Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens, i.e. low speeds due to the high number of steps involved during sampling. In this survey, we provide a comprehensive review of articles on denoising diffusion models applied in vision, comprising both theoretical and practical contributions in the field. First, we identify and present three generic diffusion modeling frameworks, which are based on denoising diffusion probabilistic models, noise conditioned score networks, and stochastic differential equations. We further discuss the relations between diffusion models and other deep generative models, including variational auto-encoders, generative adversarial networks, energy-based models, autoregressive models and normalizing flows. Then, we introduce a multi-perspective categorization of diffusion models applied in computer vision. Finally, we illustrate the current limitations of diffusion models and envision some interesting directions for future research.
Multi-agent influence diagrams (MAIDs) are a popular form of graphical model that, for certain classes of games, have been shown to offer key complexity and explainability advantages over traditional extensive form game (EFG) representations. In this paper, we extend previous work on MAIDs by introducing the concept of a MAID subgame, as well as subgame perfect and trembling hand perfect equilibrium refinements. We then prove several equivalence results between MAIDs and EFGs. Finally, we describe an open source implementation for reasoning about MAIDs and computing their equilibria.
Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.