亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A number of studies in Information and Communication Technologies for Development (ICT4D) focus on projects' sustainability and resilience. Over the years, scholars have identified many elements to enable achievement of these goals. Nevertheless, barriers to achieving them are still a common reality in the field. In this paper, we propose that special attention should be paid to communities' relationships, self-organizing, and social capital - and the people's networks that enable them - within ICT4D scholarship and practice, as a way to achieve sustainability and resilience. Building on Green's work (2016) on social change as a force that cannot be understood without focusing on systems and power, we claim that ICT4D would benefit from intentionally growing social capital and fostering networks within its systems. We propose "network weaving" (Holley, 2013) as a practical approach, and we explore its potential to complement and advance existing ICT4D frameworks and practices, including the sense of community of the researchers themselves.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Neuro-inspired models and systems have great potential for applications in unconventional computing. Often, the mechanisms of biological neurons are modeled or mimicked in simulated or physical systems in an attempt to harness some of the computational power of the brain. However, the biological mechanisms at play in neural systems are complicated and challenging to capture and engineer; thus, it can be simpler to turn to a data-driven approach to transfer features of neural behavior to artificial substrates. In the present study, we used an evolutionary algorithm (EA) to produce spiking neural systems that emulate the patterns of behavior of biological neurons in vitro. The aim of this approach was to develop a method of producing models capable of exhibiting complex behavior that may be suitable for use as computational substrates. Our models were able to produce a level of network-wide synchrony and showed a range of behaviors depending on the target data used for their evolution, which was from a range of neuronal culture densities and maturities. The genomes of the top-performing models indicate the excitability and density of connections in the model play an important role in determining the complexity of the produced activity.

Industrial Safety deals with the physical integrity of humans, machines and the environment when they interact during production scenarios. Industrial Safety is subject to a rigorous certification process that leads to inflexible settings, in which all changes are forbidden. With the progressing introduction of smart robotics and smart machinery to the factory floor, combined with an increasing shortage of skilled workers, it becomes imperative that safety scenarios incorporate a flexible handling of the boundary between humans, machines and the environment. In order to increase the well-being of workers, reduce accidents, and compensate for different skill sets, the configuration of machines and the factory floor should be dynamically adapted, while still enforcing functional safety requirements. The contribution of this paper is as follows: (1) We present a set of three scenarios, and discuss how industrial safety mechanisms could be augmented through dynamic changes to the work environment in order to decrease potential accidents, and thus increase productivity. (2) We introduce the concept of a Cognition Aware Safety System (CASS) and its architecture. The idea behind CASS is to integrate AI based reasoning about human load, stress, and attention with AI based selection of actions to avoid the triggering of safety stops. (3) And finally, we will describe the required performance measurement dimensions for a quantitative performance measurement model to enable a comprehensive (triple bottom line) impact assessment of CASS. Additionally we introduce a detailed guideline for expert interviews to explore the feasibility of the approach for given scenarios.

Person re-identification (Re-ID) has been a significant research topic in the past decade due to its real-world applications and research significance. While supervised person Re-ID methods achieve superior performance over unsupervised counterparts, they can not scale to large unlabelled datasets and new domains due to the prohibitive labelling cost. Therefore, unsupervised person Re-ID has drawn increasing attention for its potential to address the scalability issue in person Re-ID. Unsupervised person Re-ID is challenging primarily due to lacking identity labels to supervise person feature learning. The corresponding solutions are diverse and complex, with various merits and limitations. Therefore, comprehensive surveys on this topic are essential to summarise challenges and solutions to foster future research. Existing person Re-ID surveys have focused on supervised methods from classifications and applications but lack detailed discussion on how the person Re-ID solutions address the underlying challenges. This survey review recent works on unsupervised person Re-ID from the perspective of challenges and solutions. Specifically, we provide an in-depth analysis of highly influential methods considering the four significant challenges in unsupervised person Re-ID: 1) lacking ground-truth identity labels to supervise person feature learning; 2) learning discriminative person features with pseudo-supervision; 3) learning cross-camera invariant person feature, and 4) the domain shift between datasets. We summarise and analyse evaluation results and provide insights on the effectiveness of the solutions. Finally, we discuss open issues and suggest some promising future research directions.

We review key considerations, practices, and areas for future work aimed at the responsible development and fielding of AI technologies. We describe critical challenges and make recommendations on topics that should be given priority consideration, practices that should be implemented, and policies that should be defined or updated to reflect developments with capabilities and uses of AI technologies. The Key Considerations were developed with a lens for adoption by U.S. government departments and agencies critical to national security. However, they are relevant more generally for the design, construction, and use of AI systems.

Reconfigurable intelligent surface has attracted the attention of academia and industry as soon as it appears because it can flexibly manipulate the electromagnetic characteristics of wireless channel. Especially in the past one or two years, RIS has been developing rapidly in academic research and industry promotion and is one of the key candidate technologies for 5G-Advanced and 6G networks. RIS can build a smart radio environment through its ability to regulate radio wave transmission in a flexible way. The introduction of RIS may create a new network paradigm, which brings new possibilities to the future network, but also leads to many new challenges in the technological and engineering applications. This paper first introduces the main aspects of RIS enabled wireless communication network from a new perspective, and then focuses on the key challenges faced by the introduction of RIS. This paper briefly summarizes the main engineering application challenges faced by RIS networks, and further analyzes and discusses several key technical challenges among of them in depth, such as channel degradation, network coexistence, network coexistence and network deployment, and proposes possible solutions.

Medical conditions and cases are growing at a rapid pace, where physical space is starting to be constrained. Hospitals and clinics no longer have the ability to accommodate large numbers of incoming patients. It is clear that the current state of the health industry needs to improve its valuable and limited resources. The evolution of the Internet of Things (IoT) devices along with assistive technologies can alleviate the problem in healthcare, by being a convenient and easy means of accessing healthcare services wirelessly. There is a plethora of IoT devices and potential applications that can take advantage of the unique characteristics that these technologies can offer. However, at the same time, these services pose novel challenges that need to be properly addressed. In this article, we review some popular categories of IoT-based applications for healthcare along with their devices. Then, we describe the challenges and discuss how research can properly address the open issues and improve the already existing implementations in healthcare. Further possible solutions are also discussed to show their potential in being viable solutions for future healthcare applications

High communication speed and sufficient energy supply are the directions of technological development. Energy and information available anywhere and anytime has always been people's good wishes. On this basis, resonant beam system (RBS) has demonstrated its unique superiority in meeting the needs for energy and communication. The previous work has mostly focused on the analysis of charging performance of RBS and its steady-state characteristics. In order to analyze the communication performance of RBS more thoroughly, we propose a resonant beam charging and communication (RBCC) system and use the equivalent circuit analysis method to conduct transient analysis on it. The equivalent circuit reveals the dynamic establishment process of the resonant beam from scratch, which facilitates the analysis of the relaxation oscillation process and a deeper understanding of the energy transmission and communication performance. In addition, we explore the energy transmission and communication performance of the RBCC under different energy allocation strategies.

Turning principles into practice is one of the most pressing challenges of artificial intelligence (AI) governance. In this article, we reflect on a novel governance initiative by one of the world's largest AI conferences. In 2020, the Conference on Neural Information Processing Systems (NeurIPS) introduced a requirement for submitting authors to include a statement on the broader societal impacts of their research. Drawing insights from similar governance initiatives, including institutional review boards (IRBs) and impact requirements for funding applications, we investigate the risks, challenges and potential benefits of such an initiative. Among the challenges, we list a lack of recognised best practice and procedural transparency, researcher opportunity costs, institutional and social pressures, cognitive biases, and the inherently difficult nature of the task. The potential benefits, on the other hand, include improved anticipation and identification of impacts, better communication with policy and governance experts, and a general strengthening of the norms around responsible research. To maximise the chance of success, we recommend measures to increase transparency, improve guidance, create incentives to engage earnestly with the process, and facilitate public deliberation on the requirement's merits and future. Perhaps the most important contribution from this analysis are the insights we can gain regarding effective community-based governance and the role and responsibility of the AI research community more broadly.

The tourism industry is increasingly influenced by the evolution of information and communication technologies (ICT), which are revolutionizing the way people travel. In this work we want to nvestigate the use of innovative IT technologies by DMOs (Destination Management Organizations), focusing on blockchain technology, both from the point of view of research in the field, and in the study of the most relevant software projects. In particular, we intend to verify the benefits offered by these IT tools in the management and monitoring of a destination, without forgetting the implications for the other stakeholders involved. These technologies, in fact, can offer a wide range of services that can be useful throughout the life cycle of the destination.

As a field of AI, Machine Reasoning (MR) uses largely symbolic means to formalize and emulate abstract reasoning. Studies in early MR have notably started inquiries into Explainable AI (XAI) -- arguably one of the biggest concerns today for the AI community. Work on explainable MR as well as on MR approaches to explainability in other areas of AI has continued ever since. It is especially potent in modern MR branches, such as argumentation, constraint and logic programming, planning. We hereby aim to provide a selective overview of MR explainability techniques and studies in hopes that insights from this long track of research will complement well the current XAI landscape. This document reports our work in-progress on MR explainability.

北京阿比特科技有限公司