亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reconfigurable intelligent surface has attracted the attention of academia and industry as soon as it appears because it can flexibly manipulate the electromagnetic characteristics of wireless channel. Especially in the past one or two years, RIS has been developing rapidly in academic research and industry promotion and is one of the key candidate technologies for 5G-Advanced and 6G networks. RIS can build a smart radio environment through its ability to regulate radio wave transmission in a flexible way. The introduction of RIS may create a new network paradigm, which brings new possibilities to the future network, but also leads to many new challenges in the technological and engineering applications. This paper first introduces the main aspects of RIS enabled wireless communication network from a new perspective, and then focuses on the key challenges faced by the introduction of RIS. This paper briefly summarizes the main engineering application challenges faced by RIS networks, and further analyzes and discusses several key technical challenges among of them in depth, such as channel degradation, network coexistence, network coexistence and network deployment, and proposes possible solutions.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

When 5G began its commercialisation journey around 2020, the discussion on the vision of 6G also surfaced. Researchers expect 6G to have higher bandwidth, coverage, reliability, energy efficiency, lower latency, and, more importantly, an integrated "human-centric" network system powered by artificial intelligence (AI). Such a 6G network will lead to an excessive number of automated decisions made every second. These decisions can range widely, from network resource allocation to collision avoidance for self-driving cars. However, the risk of losing control over decision-making may increase due to high-speed data-intensive AI decision-making beyond designers and users' comprehension. The promising explainable AI (XAI) methods can mitigate such risks by enhancing the transparency of the black box AI decision-making process. This survey paper highlights the need for XAI towards the upcoming 6G age in every aspect, including 6G technologies (e.g., intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0). Moreover, we summarised the lessons learned from the recent attempts and outlined important research challenges in applying XAI for building 6G systems. This research aligns with goals 9, 11, 16, and 17 of the United Nations Sustainable Development Goals (UN-SDG), promoting innovation and building infrastructure, sustainable and inclusive human settlement, advancing justice and strong institutions, and fostering partnership at the global level.

Reconfigurable intelligent surface (RIS) constitutes an essential and promising paradigm that relies programmable wireless environment and provides capability for space-intensive communications, due to the use of low-cost massive reflecting elements over the entire surfaces of man-made structures. However, accurate channel estimation is a fundamental technical prerequisite to achieve the huge performance gains from RIS. By leveraging the low rank structure of RIS channels, three practical residual neural networks, named convolutional blind denoising network, convolutional denoising generative adversarial networks and multiple residual dense network, are proposed to obtain accurate channel state information, which can reflect the impact of different methods on the estimation performance. Simulation results reveal the evolution direction of these three methods and reveal their superior performance compared with existing benchmark schemes.

This paper presents a novel approach for the joint design of a reconfigurable intelligent surface (RIS) and a transmitter-receiver pair that are trained together as a set of deep neural networks (DNNs) to optimize the end-to-end communication performance at the receiver. The RIS is a software-defined array of unit cells that can be controlled in terms of the scattering and reflection profiles to focus the incoming signals from the transmitter to the receiver. The benefit of the RIS is to improve the coverage and spectral efficiency for wireless communications by overcoming physical obstructions of the line-of-sight (LoS) links. The selection process of the RIS beam codeword (out of a pre-defined codebook) is formulated as a DNN, while the operations of the transmitter-receiver pair are modeled as two DNNs, one for the encoder (at the transmitter) and the other one for the decoder (at the receiver) of an autoencoder, by accounting for channel effects including those induced by the RIS in between. The underlying DNNs are jointly trained to minimize the symbol error rate at the receiver. Numerical results show that the proposed design achieves major gains in error performance with respect to various baseline schemes, where no RIS is used or the selection of the RIS beam is separated from the design of the transmitter-receiver pair.

Wireless communication systems have almost exclusively operated in the far-field of antennas and antenna arrays, which is conventionally characterized by having propagation distances beyond the Fraunhofer distance. This is natural since the Fraunhofer distance is normally only a few wavelengths. With the advent of active arrays and passive reconfigurable intelligent surfaces (RIS) that are physically large, it is plausible that the transmitter or receiver is located in between the Fraunhofer distance of the individual array/surface elements and the Fraunhofer distance of the entire array. An RIS then can be configured to reflect the incident waveform towards a point in the radiative near-field of the surface, resulting in a beam with finite depth, or as a conventional angular beam with infinity focus, which only results in amplification in the far-field. To understand when these different options are viable, an accurate characterization of the near-field behaviors is necessary. In this paper, we revisit the motivation and approximations behind the Fraunhofer distance and show that it is not the right metric for determining when near-field focusing is possible. We obtain the distance range where finite-depth beamforming is possible and the distance where the beamforming gain tapers off.

Benefiting from huge bandwidth resources, millimeter-wave (mmWave) communications provide one of the most promising technologies for the fifth-generation wireless networks. To compensate for high pathloss of mmWave signals, large antenna arrays are equipped at base stations and user equipment to establish directional beamforming, where beam management is adopted to acquire and track the optimal beam pair with the maximum received power. Naturally, narrow beams are expected to achieve larger beamforming gain, whereas it could impose enormous training overhead and high sensitivity to blockages. Fortunately, the amazing success of deep learning (DL) has stimulated increasing interest in applying it to address those issues. In this article, we first elaborate the motivations of applying DL in beam management. Then, the current state-of-the-arts are reviewed, where their research routes and key features are discussed. Finally, challenges and future opportunities are summarized, highlighting DL design insights and novel beam management mechanisms. We hope this article can stimulate more striking ideas and exciting contributions for DL assisted beam management.

Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy and health of their residents, especially for the elderly and dependent. To provide such services, a smart home must be able to understand the daily activities of its residents. Techniques for recognizing human activity in smart homes are advancing daily. But new challenges are emerging every day. In this paper, we present recent algorithms, works, challenges and taxonomy of the field of human activity recognition in a smart home through ambient sensors. Moreover, since activity recognition in smart homes is a young field, we raise specific problems, missing and needed contributions. But also propose directions, research opportunities and solutions to accelerate advances in this field.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

AI in finance broadly refers to the applications of AI techniques in financial businesses. This area has been lasting for decades with both classic and modern AI techniques applied to increasingly broader areas of finance, economy and society. In contrast to either discussing the problems, aspects and opportunities of finance that have benefited from specific AI techniques and in particular some new-generation AI and data science (AIDS) areas or reviewing the progress of applying specific techniques to resolving certain financial problems, this review offers a comprehensive and dense roadmap of the overwhelming challenges, techniques and opportunities of AI research in finance over the past decades. The landscapes and challenges of financial businesses and data are firstly outlined, followed by a comprehensive categorization and a dense overview of the decades of AI research in finance. We then structure and illustrate the data-driven analytics and learning of financial businesses and data. The comparison, criticism and discussion of classic vs. modern AI techniques for finance are followed. Lastly, open issues and opportunities address future AI-empowered finance and finance-motivated AI research.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

Reinforcement learning (RL) algorithms have been around for decades and been employed to solve various sequential decision-making problems. These algorithms however have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This paper addresses an important aspect of deep RL related to situations that demand multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multi-agent deep RL (MADRL) is presented, including non-stationarity, partial observability, continuous state and action spaces, multi-agent training schemes, multi-agent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed, with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to future development of more robust and highly useful multi-agent learning methods for solving real-world problems.

北京阿比特科技有限公司