亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Internet of Things (IoT) is an emerging technology that aims to connect heterogeneous and constrained objects to each other and to the Internet. It has grown significantly in a wide variety of applications such as smart homes, smart cities, smart vehicles, etc. The huge number of connected devices increases the challenges, as IoT provides diverse and complex network services with different requirements on a common infrastructure. Network Softwarization is the latest network paradigm that transforms traditional network processes to the separation of hardware and software by using some enabling network technologies such as Software Defined Networking (SDN) and Network Function Virtualization (NFV). Machine Learning (ML) plays an essential role in creating smarter IoT networks, as it has shown remarkable results in various domains. Given that the network softwarization allows it to be easily integrated, ML can play a crucial role in efficient and self-adaptive IoT networks. In this paper, we provide a detailed overview of the concepts of IoT, network softwarization, and ML, and we study and discuss the state of the art of intelligent ML-enabled network softwarization for IoT. We also identify the most prominent future research directions to be considered.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Speech Emotion Recognition (SER) is crucial for enabling computers to understand the emotions conveyed in human communication. With recent advancements in Deep Learning (DL), the performance of SER models has significantly improved. However, designing an optimal DL architecture requires specialised knowledge and experimental assessments. Fortunately, Neural Architecture Search (NAS) provides a potential solution for automatically determining the best DL model. The Differentiable Architecture Search (DARTS) is a particularly efficient method for discovering optimal models. This study presents emoDARTS, a DARTS-optimised joint CNN and Sequential Neural Network (SeqNN: LSTM, RNN) architecture that enhances SER performance. The literature supports the selection of CNN and LSTM coupling to improve performance. While DARTS has previously been used to choose CNN and LSTM operations independently, our technique adds a novel mechanism for selecting CNN and SeqNN operations in conjunction using DARTS. Unlike earlier work, we do not impose limits on the layer order of the CNN. Instead, we let DARTS choose the best layer order inside the DARTS cell. We demonstrate that emoDARTS outperforms conventionally designed CNN-LSTM models and surpasses the best-reported SER results achieved through DARTS on CNN-LSTM by evaluating our approach on the IEMOCAP, MSP-IMPROV, and MSP-Podcast datasets.

Zero Involvement Pairing and Authentication (ZIPA) is a promising technique for autoprovisioning large networks of Internet-of-Things (IoT) devices. In this work, we present the first successful signal injection attack on a ZIPA system. Most existing ZIPA systems assume there is a negligible amount of influence from the unsecured outside space on the secured inside space. In reality, environmental signals do leak from adjacent unsecured spaces and influence the environment of the secured space. Our attack takes advantage of this fact to perform a signal injection attack on the popular Schurmann & Sigg algorithm. The keys generated by the adversary with a signal injection attack at 95 dBA is within the standard error of the legitimate device.

In a recent study, Reinforcement Learning (RL) used in combination with many-objective search, has been shown to outperform alternative techniques (random search and many-objective search) for online testing of Deep Neural Network-enabled systems. The empirical evaluation of these techniques was conducted on a state-of-the-art Autonomous Driving System (ADS). This work is a replication and extension of that empirical study. Our replication shows that RL does not outperform pure random test generation in a comparison conducted under the same settings of the original study, but with no confounding factor coming from the way collisions are measured. Our extension aims at eliminating some of the possible reasons for the poor performance of RL observed in our replication: (1) the presence of reward components providing contrasting or useless feedback to the RL agent; (2) the usage of an RL algorithm (Q-learning) which requires discretization of an intrinsically continuous state space. Results show that our new RL agent is able to converge to an effective policy that outperforms random testing. Results also highlight other possible improvements, which open to further investigations on how to best leverage RL for online ADS testing.

Context: Machine Learning Operations (MLOps) has emerged as a set of practices that combines development, testing, and operations to deploy and maintain machine learning applications. Objective: In this paper, we assess the benefits and limitations of using the MLOps principles in online supervised learning. Method: We conducted two focus group sessions on the benefits and limitations of applying MLOps principles for online machine learning applications with six experienced machine learning developers. Results: The focus group revealed that machine learning developers see many benefits of using MLOps principles but also that these do not apply to all the projects they worked on. According to experts, this investment tends to pay off for larger applications with continuous deployment that require well-prepared automated processes. However, for initial versions of machine learning applications, the effort taken to implement the principles could enlarge the project's scope and increase the time needed to deploy a first version to production. The discussion brought up that most of the benefits are related to avoiding error-prone manual steps, enabling to restore the application to a previous state, and having a robust continuous automated deployment pipeline. Conclusions: It is important to balance the trade-offs of investing time and effort in implementing the MLOps principles considering the scope and needs of the project, favoring such investments for larger applications with continuous model deployment requirements.

Imitation Learning (IL) is a promising paradigm for learning dynamic manipulation of deformable objects since it does not depend on difficult-to-create accurate simulations of such objects. However, the translation of motions demonstrated by a human to a robot is a challenge for IL, due to differences in the embodiments and the robot's physical limits. These limits are especially relevant in dynamic manipulation where high velocities and accelerations are typical. To address this problem, we propose a framework that first maps a dynamic demonstration into a motion that respects the robot's constraints using a constrained Dynamic Movement Primitive. Second, the resulting object state is further optimized by quasi-static refinement motions to optimize task performance metrics. This allows both efficiently altering the object state by dynamic motions and stable small-scale refinements. We evaluate the framework in the challenging task of bag opening, designing the system BILBO: Bimanual dynamic manipulation using Imitation Learning for Bag Opening. Our results show that BILBO can successfully open a wide range of crumpled bags, using a demonstration with a single bag. See supplementary material at //sites.google.com/view/bilbo-bag.

Gaussian-Bernoulli restricted Boltzmann machines (GBRBMs) are often used for semi-supervised anomaly detection, where they are trained using only normal data points. In GBRBM-based anomaly detection, normal and anomalous data are classified based on a score that is identical to an energy function of the marginal GBRBM. However, the classification threshold is difficult to set to an appropriate value, as this score cannot be interpreted. In this study, we propose a measure that improves score's interpretability based on its cumulative distribution, and establish a guideline for setting the threshold using the interpretable measure. The results of numerical experiments show that the guideline is reasonable when setting the threshold solely using normal data points. Moreover, because identifying the measure involves computationally infeasible evaluation of the minimum score value, we also propose an evaluation method for the minimum score based on simulated annealing, which is widely used for optimization problems. The proposed evaluation method was also validated using numerical experiments.

Implicit gender bias in Large Language Models (LLMs) is a well-documented problem, and implications of gender introduced into automatic translations can perpetuate real-world biases. However, some LLMs use heuristics or post-processing to mask such bias, making investigation difficult. Here, we examine bias in LLMss via back-translation, using the DeepL translation API to investigate the bias evinced when repeatedly translating a set of 56 Software Engineering tasks used in a previous study. Each statement starts with 'she', and is translated first into a 'genderless' intermediate language then back into English; we then examine pronoun- choice in the back-translated texts. We expand prior research in the following ways: (1) by comparing results across five intermediate languages, namely Finnish, Indonesian, Estonian, Turkish and Hungarian; (2) by proposing a novel metric for assessing the variation in gender implied in the repeated translations, avoiding the over-interpretation of individual pronouns, apparent in earlier work; (3) by investigating sentence features that drive bias; (4) and by comparing results from three time-lapsed datasets to establish the reproducibility of the approach. We found that some languages display similar patterns of pronoun use, falling into three loose groups, but that patterns vary between groups; this underlines the need to work with multiple languages. We also identify the main verb appearing in a sentence as a likely significant driver of implied gender in the translations. Moreover, we see a good level of replicability in the results, and establish that our variation metric proves robust despite an obvious change in the behaviour of the DeepL translation API during the course of the study. These results show that the back-translation method can provide further insights into bias in language models.

Gun violence is a major source of injury and death in the United States. However, relatively little is known about the effects of firearm injuries on survivors and their family members and how these effects vary across subpopulations. To study these questions and, more generally, to address a gap in the causal inference literature, we present a framework for the study of effect modification or heterogeneous treatment effects in difference-in-differences designs. We implement a new matching technique, which combines profile matching and risk set matching, to (i) preserve the time alignment of covariates, exposure, and outcomes, avoiding pitfalls of other common approaches for difference-in-differences, and (ii) explicitly control biases due to imbalances in observed covariates in subgroups discovered from the data. Our case study shows significant and persistent effects of nonfatal firearm injuries on several health outcomes for those injured and on the mental health of their family members. Sensitivity analyses reveal that these results are moderately robust to unmeasured confounding bias. Finally, while the effects for those injured vary largely by the severity of the injury and its documented intent, for families, effects are strongest for those whose relative's injury is documented as resulting from an assault, self-harm, or law enforcement intervention.

Visual Odometry (VO) is one of the fundamental tasks in computer vision for robotics. However, its performance is deeply affected by High Dynamic Range (HDR) scenes, omnipresent outdoor. While new Automatic-Exposure (AE) approaches to mitigate this have appeared, their comparison in a reproducible manner is problematic. This stems from the fact that the behavior of AE depends on the environment, and it affects the image acquisition process. Consequently, AE has traditionally only been benchmarked in an online manner, making the experiments non-reproducible. To solve this, we propose a new methodology based on an emulator that can generate images at any exposure time. It leverages BorealHDR, a unique multi-exposure stereo dataset collected over 10 km, on 55 trajectories with challenging illumination conditions. Moreover, it includes lidar-inertial-based global maps with pose estimation for each image frame as well as Global Navigation Satellite System (GNSS) data, for comparison. We show that using these images acquired at different exposure times, we can emulate realistic images, keeping a Root-Mean-Square Error (RMSE) below 1.78 % compared to ground truth images. To demonstrate the practicality of our approach for offline benchmarking, we compared three state-of-the-art AE algorithms on key elements of Visual Simultaneous Localization And Mapping (VSLAM) pipeline, against four baselines. Consequently, reproducible evaluation of AE is now possible, speeding up the development of future approaches. Our code and dataset are available online at this link: //github.com/norlab-ulaval/BorealHDR

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

北京阿比特科技有限公司