亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the following two fixed-cardinality optimization problems (a maximization and a minimization variant). For a fixed $\alpha$ between zero and one we are given a graph and two numbers $k \in \mathbb{N}$ and $t \in \mathbb{Q}$. The task is to find a vertex subset $S$ of exactly $k$ vertices that has value at least (resp. at most for minimization) $t$. Here, the value of a vertex set computes as $\alpha$ times the number of edges with exactly one endpoint in $S$ plus $1-\alpha$ times the number of edges with both endpoints in $S$. These two problems generalize many prominent graph problems, such as Densest $k$-Subgraph, Sparsest $k$-Subgraph, Partial Vertex Cover, and Max ($k$,$n-k$)-Cut. In this work, we complete the picture of their parameterized complexity on several types of sparse graphs that are described by structural parameters. In particular, we provide kernelization algorithms and kernel lower bounds for these problems. A somewhat surprising consequence of our kernelizations is that Partial Vertex Cover and Max $(k,n-k)$-Cut not only behave in the same way but that the kernels for both problems can be obtained by the same algorithms.

相關內容

Causal reversibility blends causality and reversibility for concurrent systems. It indicates that an action can be undone provided that all of its consequences have been undone already, thus making it possible to bring the system back to a past consistent state. Time reversibility is instead considered in the field of stochastic processes, mostly for efficient analysis purposes. A performance model based on a continuous-time Markov chain is time reversible if its stochastic behavior remains the same when the direction of time is reversed. We bridge these two theories of reversibility by showing the conditions under which causal reversibility and time reversibility are both ensured by construction. This is done in the setting of a stochastic process calculus, which is then equipped with a variant of stochastic bisimilarity accounting for both forward and backward directions.

In this work, we study the multi-agent decision problem where agents try to coordinate to optimize a given system-level objective. While solving for the global optimal is intractable in many cases, the greedy algorithm is a well-studied and efficient way to provide good approximate solutions - notably for submodular optimization problems. Executing the greedy algorithm requires the agents to be ordered and execute a local optimization based on the solutions of the previous agents. However, in limited information settings, passing the solution from the previous agents may be nontrivial, as some agents may not be able to directly communicate with each other. Thus the communication time required to execute the greedy algorithm is closely tied to the order that the agents are given. In this work, we characterize interplay between the communication complexity and agent orderings by showing that the complexity using the best ordering is O(n) and increases considerably to O(n^2) when using the worst ordering. Motivated by this, we also propose an algorithm that can find an ordering and execute the greedy algorithm quickly, in a distributed fashion. We also show that such an execution of the greedy algorithm is advantageous over current methods for distributed submodular maximization.

In Gapped String Indexing, the goal is to compactly represent a string $S$ of length $n$ such that given queries consisting of two strings $P_1$ and $P_2$, called patterns, and an integer interval $[\alpha, \beta]$, called gap range, we can quickly find occurrences of $P_1$ and $P_2$ in $S$ with distance in $[\alpha, \beta]$. Due to the many applications of this fundamental problem in computational biology and elsewhere, there is a great body of work for restricted or parameterised variants of the problem. However, for the general problem statement, no improvements upon the trivial $\mathcal{O}(n)$-space $\mathcal{O}(n)$-query time or $\Omega(n^2)$-space $\mathcal{\tilde{O}}(|P_1| + |P_2| + \mathrm{occ})$-query time solutions were known so far. We break this barrier obtaining interesting trade-offs with polynomially subquadratic space and polynomially sublinear query time. In particular, we show that, for every $0\leq \delta \leq 1$, there is a data structure for Gapped String Indexing with either $\mathcal{\tilde{O}}(n^{2-\delta/3})$ or $\mathcal{\tilde{O}}(n^{3-2\delta})$ space and $\mathcal{\tilde{O}}(|P_1| + |P_2| + n^{\delta}\cdot (\mathrm{occ}+1))$ query time, where $\mathrm{occ}$ is the number of reported occurrences. As a new fundamental tool towards obtaining our main result, we introduce the Shifted Set Intersection problem: preprocess a collection of sets $S_1, \ldots, S_k$ of integers such that given queries consisting of three integers $i,j,s$, we can quickly output YES if and only if there exist $a \in S_i$ and $b \in S_j$ with $a+s = b$. We start by showing that the Shifted Set Intersection problem is equivalent to the indexing variant of 3SUM (3SUM Indexing) [Golovnev et al., STOC 2020]. Via several steps of reduction we then show that the Gapped String Indexing problem reduces to polylogarithmically many instances of the Shifted Set Intersection problem.

Tomographic SAR technique has attracted remarkable interest for its ability of three-dimensional resolving along the elevation direction via a stack of SAR images collected from different cross-track angles. The emerged compressed sensing (CS)-based algorithms have been introduced into TomoSAR considering its super-resolution ability with limited samples. However, the conventional CS-based methods suffer from several drawbacks, including weak noise resistance, high computational complexity, and complex parameter fine-tuning. Aiming at efficient TomoSAR imaging, this paper proposes a novel efficient sparse unfolding network based on the analytic learned iterative shrinkage thresholding algorithm (ALISTA) architecture with adaptive threshold, named Adaptive Threshold ALISTA-based Sparse Imaging Network (ATASI-Net). The weight matrix in each layer of ATASI-Net is pre-computed as the solution of an off-line optimization problem, leaving only two scalar parameters to be learned from data, which significantly simplifies the training stage. In addition, adaptive threshold is introduced for each azimuth-range pixel, enabling the threshold shrinkage to be not only layer-varied but also element-wise. Moreover, the final learned thresholds can be visualized and combined with the SAR image semantics for mutual feedback. Finally, extensive experiments on simulated and real data are carried out to demonstrate the effectiveness and efficiency of the proposed method.

Graph neural networks (GNNs) are widely used for modeling complex interactions between entities represented as vertices of a graph. Despite recent efforts to theoretically analyze the expressive power of GNNs, a formal characterization of their ability to model interactions is lacking. The current paper aims to address this gap. Formalizing strength of interactions through an established measure known as separation rank, we quantify the ability of certain GNNs to model interaction between a given subset of vertices and its complement, i.e. between sides of a given partition of input vertices. Our results reveal that the ability to model interaction is primarily determined by the partition's walk index -- a graph-theoretical characteristic that we define by the number of walks originating from the boundary of the partition. Experiments with common GNN architectures corroborate this finding. As a practical application of our theory, we design an edge sparsification algorithm named Walk Index Sparsification (WIS), which preserves the ability of a GNN to model interactions when input edges are removed. WIS is simple, computationally efficient, and markedly outperforms alternative methods in terms of induced prediction accuracy. More broadly, it showcases the potential of improving GNNs by theoretically analyzing the interactions they can model.

We study local canonical labeling algorithms on an Erd\H{o}s--R\'enyi random graph $G(n,p_n)$. A canonical labeling algorithm assigns a unique label to each vertex of an unlabeled graph such that the labels are invariant under isomorphism. Here we focus on local algorithms, where the label of each vertex depends only on its low-depth neighborhood. Czajka and Pandurangan showed that the degree profile of a vertex (i.e., the sorted list of the degrees of its neighbors) gives a canonical labeling with high probability when $n p_n = \omega( \log^{4}(n) / \log \log n )$ (and $p_{n} \leq 1/2$); subsequently, Mossel and Ross showed that the same holds when $n p_n = \omega( \log^{2}(n) )$. Our first result shows that their analysis essentially cannot be improved: we prove that when $n p_n = o( \log^{2}(n) / (\log \log n)^{3} )$, with high probability there exist distinct vertices with isomorphic $2$-neighborhoods. Our main result is a positive counterpart to this, showing that $3$-neighborhoods give a canonical labeling when $n p_n \geq (1+\delta) \log n$ (and $p_n \leq 1/2$); this improves a recent result of Ding, Ma, Wu, and Xu, completing the picture above the connectivity threshold. We also discuss implications for random graph isomorphism and shotgun assembly of random graphs.

Artificial intelligence for graphs (graph AI) has achieved remarkable success in modeling complex systems, ranging from dynamic networks in biology to interacting particle systems in physics. However, the increasingly heterogeneous graph datasets call for multimodal methods that can combine different inductive biases: the set of assumptions that algorithms use to make predictions for inputs they have not encountered during training. Learning on multimodal graph datasets presents fundamental challenges because the inductive biases can vary by data modality and graphs might not be explicitly given in the input. To address these challenges, multimodal graph AI methods combine different modalities while leveraging cross-modal dependencies. Here, we survey 145 studies in graph AI and realize that diverse datasets are increasingly combined using graphs and fed into sophisticated multimodal methods, specified as image-intensive, knowledge-grounded and language-intensive models. Using this categorization, we introduce a blueprint for multimodal graph AI to study existing methods and guide the design of future methods.

In our paper, we consider the following general problems: check feasibility, count the number of feasible solutions, find an optimal solution, and count the number of optimal solutions in $P \cap Z^n$, assuming that $P$ is a polyhedron, defined by systems $A x \leq b$ or $Ax = b,\, x \geq 0$ with a sparse matrix $A$. We develop algorithms for these problems that outperform state of the art ILP and counting algorithms on sparse instances with bounded elements. We use known and new methods to develop new exponential algorithms for Edge/Vertex Multi-Packing/Multi-Cover Problems on graphs and hypergraphs. This framework consists of many different problems, such as the Stable Multi-set, Vertex Multi-cover, Dominating Multi-set, Set Multi-cover, Multi-set Multi-cover, and Hypergraph Multi-matching problems, which are natural generalizations of the standard Stable Set, Vertex Cover, Dominating Set, Set Cover, and Maximal Matching problems.

The Strong Exponential Time Hypothesis (SETH) asserts that for every $\varepsilon>0$ there exists $k$ such that $k$-SAT requires time $(2-\varepsilon)^n$. The field of fine-grained complexity has leveraged SETH to prove quite tight conditional lower bounds for dozens of problems in various domains and complexity classes, including Edit Distance, Graph Diameter, Hitting Set, Independent Set, and Orthogonal Vectors. Yet, it has been repeatedly asked in the literature whether SETH-hardness results can be proven for other fundamental problems such as Hamiltonian Path, Independent Set, Chromatic Number, MAX-$k$-SAT, and Set Cover. In this paper, we show that fine-grained reductions implying even $\lambda^n$-hardness of these problems from SETH for any $\lambda>1$, would imply new circuit lower bounds: super-linear lower bounds for Boolean series-parallel circuits or polynomial lower bounds for arithmetic circuits (each of which is a four-decade open question). We also extend this barrier result to the class of parameterized problems. Namely, for every $\lambda>1$ we conditionally rule out fine-grained reductions implying SETH-based lower bounds of $\lambda^k$ for a number of problems parameterized by the solution size $k$. Our main technical tool is a new concept called polynomial formulations. In particular, we show that many problems can be represented by relatively succinct low-degree polynomials, and that any problem with such a representation cannot be proven SETH-hard (without proving new circuit lower bounds).

Random order online contention resolution schemes (ROCRS) are structured online rounding algorithms with numerous applications and links to other well-known online selection problems, like the matroid secretary conjecture. We are interested in ROCRS subject to a matroid constraint, which is among the most studied constraint families. Previous ROCRS required to know upfront the full fractional point to be rounded as well as the matroid. It is unclear to what extent this is necessary. Fu, Lu, Tang, Turkieltaub, Wu, Wu, and Zhang (SOSA 2022) shed some light on this question by proving that no strong (constant-selectable) online or even offline contention resolution scheme exists if the fractional point is unknown, not even for graphic matroids. In contrast, we show, in a setting with slightly more knowledge and where the fractional point reveals one by one, that there is hope to obtain strong ROCRS by providing a simple constant-selectable ROCRS for graphic matroids that only requires to know the size of the ground set in advance. Moreover, our procedure holds in the more general adversarial order with a sample setting, where, after sampling a random constant fraction of the elements, all remaining (non-sampled) elements may come in adversarial order.

北京阿比特科技有限公司