亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Random order online contention resolution schemes (ROCRS) are structured online rounding algorithms with numerous applications and links to other well-known online selection problems, like the matroid secretary conjecture. We are interested in ROCRS subject to a matroid constraint, which is among the most studied constraint families. Previous ROCRS required to know upfront the full fractional point to be rounded as well as the matroid. It is unclear to what extent this is necessary. Fu, Lu, Tang, Turkieltaub, Wu, Wu, and Zhang (SOSA 2022) shed some light on this question by proving that no strong (constant-selectable) online or even offline contention resolution scheme exists if the fractional point is unknown, not even for graphic matroids. In contrast, we show, in a setting with slightly more knowledge and where the fractional point reveals one by one, that there is hope to obtain strong ROCRS by providing a simple constant-selectable ROCRS for graphic matroids that only requires to know the size of the ground set in advance. Moreover, our procedure holds in the more general adversarial order with a sample setting, where, after sampling a random constant fraction of the elements, all remaining (non-sampled) elements may come in adversarial order.

相關內容

We introduce a new algorithm promoting sparsity called {\it Support Exploration Algorithm (SEA)} and analyze it in the context of support recovery/model selection problems.The algorithm can be interpreted as an instance of the {\it straight-through estimator (STE)} applied to the resolution of a sparse linear inverse problem. SEA uses a non-sparse exploratory vector and makes it evolve in the input space to select the sparse support. We put to evidence an oracle update rule for the exploratory vector and consider the STE update. The theoretical analysis establishes general sufficient conditions of support recovery. The general conditions are specialized to the case where the matrix $A$ performing the linear measurements satisfies the {\it Restricted Isometry Property (RIP)}.Experiments show that SEA can efficiently improve the results of any algorithm. Because of its exploratory nature, SEA also performs remarkably well when the columns of $A$ are strongly coherent.

In graph learning, maps between graphs and their subgraphs frequently arise. For instance, when coarsening or rewiring operations are present along the pipeline, one needs to keep track of the corresponding nodes between the original and modified graphs. Classically, these maps are represented as binary node-to-node correspondence matrices and used as-is to transfer node-wise features between the graphs. In this paper, we argue that simply changing this map representation can bring notable benefits to graph learning tasks. Drawing inspiration from recent progress in geometry processing, we introduce a spectral representation for maps that is easy to integrate into existing graph learning models. This spectral representation is a compact and straightforward plug-in replacement and is robust to topological changes of the graphs. Remarkably, the representation exhibits structural properties that make it interpretable, drawing an analogy with recent results on smooth manifolds. We demonstrate the benefits of incorporating spectral maps in graph learning pipelines, addressing scenarios where a node-to-node map is not well defined, or in the absence of exact isomorphism. Our approach bears practical benefits in knowledge distillation and hierarchical learning, where we show comparable or improved performance at a fraction of the computational cost.

Auto-bidding has recently become a popular feature in ad auctions. This feature enables advertisers to simply provide high-level constraints and goals to an automated agent, which optimizes their auction bids on their behalf. In this paper, we examine the effect of different auctions on the incentives of advertisers to report their constraints to the auto-bidder intermediaries. More precisely, we study whether canonical auctions such as first price auction (FPA) and second price auction (SPA) are auto-bidding incentive compatible (AIC): whether an advertiser can gain by misreporting their constraints to the autobidder. We consider value-maximizing advertisers in two important settings: when they have a budget constraint and when they have a target cost-per-acquisition constraint. The main result of our work is that for both settings, FPA and SPA are not AIC. This contrasts with FPA being AIC when auto-bidders are constrained to bid using a (sub-optimal) uniform bidding policy. We further extend our main result and show that any (possibly randomized) auction that is truthful (in the classic profit-maximizing sense), scalar invariant and symmetric is not AIC. Finally, to complement our findings, we provide sufficient market conditions for FPA and SPA to become AIC for two advertisers. These conditions require advertisers' valuations to be well-aligned. This suggests that when the competition is intense for all queries, advertisers have less incentive to misreport their constraints. From a methodological standpoint, we develop a novel continuous model of queries. This model provides tractability to study equilibrium with auto-bidders, which contrasts with the standard discrete query model, which is known to be hard. Through the analysis of this model, we uncover a surprising result: in auto-bidding with two advertisers, FPA and SPA are auction equivalent.

We study first-order methods with preconditioning for solving structured nonlinear convex optimization problems. We propose a new family of preconditioners generated by symmetric polynomials. They provide first-order optimization methods with a provable improvement of the condition number, cutting the gaps between highest eigenvalues, without explicit knowledge of the actual spectrum. We give a stochastic interpretation of this preconditioning in terms of coordinate volume sampling and compare it with other classical approaches, including the Chebyshev polynomials. We show how to incorporate a polynomial preconditioning into the Gradient and Fast Gradient Methods and establish the corresponding global complexity bounds. Finally, we propose a simple adaptive search procedure that automatically chooses the best possible polynomial preconditioning for the Gradient Method, minimizing the objective along a low-dimensional Krylov subspace. Numerical experiments confirm the efficiency of our preconditioning strategies for solving various machine learning problems.

Contention resolution schemes (or CR schemes), introduced by Chekuri, Vondrak and Zenklusen, are a class of randomized rounding algorithms for converting a fractional solution to a relaxation for a down-closed constraint family into an integer solution. A CR scheme takes a fractional point $x$ in a relaxation polytope, rounds each coordinate $x_i$ independently to get a possibly non-feasible set, and then drops some elements in order to satisfy the constraints. Intuitively, a contention resolution scheme is $c$-balanced if every element $i$ is selected with probability at least $c \cdot x_i$. It is known that general matroids admit a $(1-1/e)$-balanced CR scheme, and that this is (asymptotically) optimal. This is in particular true for the special case of uniform matroids of rank one. In this work, we provide a simple and explicit monotone CR scheme for uniform matroids of rank $k$ on $n$ elements with a balancedness of $1 - \binom{n}{k}\:\left(1-\frac{k}{n}\right)^{n+1-k}\:\left(\frac{k}{n}\right)^k$, and show that this is optimal. As $n$ grows, this expression converges from above to $1 - e^{-k}k^k/k!$. While this asymptotic bound can be obtained by combining previously known results, these require defining an exponential-sized linear program, as well as using random sampling and the ellipsoid algorithm. Our procedure, on the other hand, has the advantage of being simple and explicit. This scheme extends naturally into an optimal CR scheme for partition matroids.

With the growing importance of preventing the COVID-19 virus, face images obtained in most video surveillance scenarios are low resolution with mask simultaneously. However, most of the previous face super-resolution solutions can not handle both tasks in one model. In this work, we treat the mask occlusion as image noise and construct a joint and collaborative learning network, called JDSR-GAN, for the masked face super-resolution task. Given a low-quality face image with the mask as input, the role of the generator composed of a denoising module and super-resolution module is to acquire a high-quality high-resolution face image. The discriminator utilizes some carefully designed loss functions to ensure the quality of the recovered face images. Moreover, we incorporate the identity information and attention mechanism into our network for feasible correlated feature expression and informative feature learning. By jointly performing denoising and face super-resolution, the two tasks can complement each other and attain promising performance. Extensive qualitative and quantitative results show the superiority of our proposed JDSR-GAN over some comparable methods which perform the previous two tasks separately.

We propose a generalization of the standard matched pairs design in which experimental units (often geographic regions or geos) may be combined into larger units/regions called "supergeos" in order to improve the average matching quality. Unlike optimal matched pairs design which can be found in polynomial time (Lu et al. 2011), this generalized matching problem is NP-hard. We formulate it as a mixed-integer program (MIP) and show that experimental design obtained by solving this MIP can often provide a significant improvement over the standard design regardless of whether the treatment effects are homogeneous or heterogeneous. Furthermore, we present the conditions under which trimming techniques that often improve performance in the case of homogeneous effects (Chen and Au, 2022), may lead to biased estimates and show that the proposed design does not introduce such bias. We use empirical studies based on real-world advertising data to illustrate these findings.

The geometric optimisation of crystal structures is a procedure widely used in Chemistry that changes the geometrical placement of the particles inside a structure. It is called structural relaxation and constitutes a local minimization problem with a non-convex objective function whose domain complexity increases along with the number of particles involved. In this work we study the performance of the two most popular first order optimisation methods, Gradient Descent and Conjugate Gradient, in structural relaxation. The respective pseudocodes can be found in Section 6. Although frequently employed, there is a lack of their study in this context from an algorithmic point of view. In order to accurately define the problem, we provide a thorough derivation of all necessary formulae related to the crystal structure energy function and the function's differentiation. We run each algorithm in combination with a constant step size, which provides a benchmark for the methods' analysis and direct comparison. We also design dynamic step size rules and study how these improve the two algorithms' performance. Our results show that there is a trade-off between convergence rate and the possibility of an experiment to succeed, hence we construct a function to assign utility to each method based on our respective preference. The function is built according to a recently introduced model of preference indication concerning algorithms with deadline and their run time. Finally, building on all our insights from the experimental results, we provide algorithmic recipes that best correspond to each of the presented preferences and select one recipe as the optimal for equally weighted preferences.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司