We propose a machine learning method to model molecular tensorial quantities, namely the magnetic anisotropy tensor, based on the Gaussian-moment neural-network approach. We demonstrate that the proposed methodology can achieve an accuracy of 0.3--0.4 cm$^{-1}$ and has excellent generalization capability for out-of-sample configurations. Moreover, in combination with machine-learned interatomic potential energies based on Gaussian moments, our approach can be applied to study the dynamic behavior of magnetic anisotropy tensors and provide a unique insight into spin-phonon relaxation.
We establish an entropic, quantum central limit theorem and quantum inverse sumset theorem in discrete-variable quantum systems describing qudits or qubits. Both results are enabled by using our recently-discovered quantum convolution. We show that the exponential rate of convergence of the entropic central limit theorem is bounded by the magic gap. We also establish an ``quantum, entropic inverse sumset theorem,'' by introducing a quantum doubling constant. Furthermore, we introduce a ``quantum Ruzsa divergence'', and we pose a conjecture called ``convolutional strong subaddivity,'' which leads to the triangle inequality for the quantum Ruzsa divergence. A byproduct of this work is a magic measure to quantify the nonstabilizer nature of a state, based on the quantum Ruzsa divergence.
The recent introduction of the Least-Squares Support Vector Regression (LS-SVR) algorithm for solving differential and integral equations has sparked interest. In this study, we expand the application of this algorithm to address systems of differential-algebraic equations (DAEs). Our work presents a novel approach to solving general DAEs in an operator format by establishing connections between the LS-SVR machine learning model, weighted residual methods, and Legendre orthogonal polynomials. To assess the effectiveness of our proposed method, we conduct simulations involving various DAE scenarios, such as nonlinear systems, fractional-order derivatives, integro-differential, and partial DAEs. Finally, we carry out comparisons between our proposed method and currently established state-of-the-art approaches, demonstrating its reliability and effectiveness.
We study the problem of sequential prediction in the stochastic setting with an adversary that is allowed to inject clean-label adversarial (or out-of-distribution) examples. Algorithms designed to handle purely stochastic data tend to fail in the presence of such adversarial examples, often leading to erroneous predictions. This is undesirable in many high-stakes applications such as medical recommendations, where abstaining from predictions on adversarial examples is preferable to misclassification. On the other hand, assuming fully adversarial data leads to very pessimistic bounds that are often vacuous in practice. To capture this motivation, we propose a new model of sequential prediction that sits between the purely stochastic and fully adversarial settings by allowing the learner to abstain from making a prediction at no cost on adversarial examples. Assuming access to the marginal distribution on the non-adversarial examples, we design a learner whose error scales with the VC dimension (mirroring the stochastic setting) of the hypothesis class, as opposed to the Littlestone dimension which characterizes the fully adversarial setting. Furthermore, we design a learner for VC dimension~1 classes, which works even in the absence of access to the marginal distribution. Our key technical contribution is a novel measure for quantifying uncertainty for learning VC classes, which may be of independent interest.
We propose \textit{masked particle modeling} (MPM) as a self-supervised method for learning generic, transferable, and reusable representations on unordered sets of inputs for use in high energy physics (HEP) scientific data. This work provides a novel scheme to perform masked modeling based pre-training to learn permutation invariant functions on sets. More generally, this work provides a step towards building large foundation models for HEP that can be generically pre-trained with self-supervised learning and later fine-tuned for a variety of down-stream tasks. In MPM, particles in a set are masked and the training objective is to recover their identity, as defined by a discretized token representation of a pre-trained vector quantized variational autoencoder. We study the efficacy of the method in samples of high energy jets at collider physics experiments, including studies on the impact of discretization, permutation invariance, and ordering. We also study the fine-tuning capability of the model, showing that it can be adapted to tasks such as supervised and weakly supervised jet classification, and that the model can transfer efficiently with small fine-tuning data sets to new classes and new data domains.
Tissue segmentation is a routine preprocessing step to reduce the computational cost of whole slide image (WSI) analysis by excluding background regions. Traditional image processing techniques are commonly used for tissue segmentation, but often require manual adjustments to parameter values for atypical cases, fail to exclude all slide and scanning artifacts from the background, and are unable to segment adipose tissue. Pen marking artifacts in particular can be a potential source of bias for subsequent analyses if not removed. In addition, several applications require the separation of individual cross-sections, which can be challenging due to tissue fragmentation and adjacent positioning. To address these problems, we develop a convolutional neural network for tissue and pen marking segmentation using a dataset of 200 H&E stained WSIs. For separating tissue cross-sections, we propose a novel post-processing method based on clustering predicted centroid locations of the cross-sections in a 2D histogram. On an independent test set, the model achieved a mean Dice score of 0.981$\pm$0.033 for tissue segmentation and a mean Dice score of 0.912$\pm$0.090 for pen marking segmentation. The mean absolute difference between the number of annotated and separated cross-sections was 0.075$\pm$0.350. Our results demonstrate that the proposed model can accurately segment H&E stained tissue cross-sections and pen markings in WSIs while being robust to many common slide and scanning artifacts. The model with trained model parameters and post-processing method are made publicly available as a Python package called SlideSegmenter.
In this paper, a comparison analysis between geometric impedance controls (GICs) derived from two different potential functions on SE(3) for robotic manipulators is presented. The first potential function is defined on the Lie group, utilizing the Frobenius norm of the configuration error matrix. The second potential function is defined utilizing the Lie algebra, i.e., log-map of the configuration error. Using a differential geometric approach, the detailed derivation of the distance metric and potential function on SE(3) is introduced. The GIC laws are respectively derived from the two potential functions, followed by extensive comparison analyses. In the qualitative analysis, the properties of the error function and control laws are analyzed, while the performances of the controllers are quantitatively compared using numerical simulation.
The fractional discrete nonlinear Schr\"odinger equation (fDNLS) is studied on a periodic lattice from the analytic and dynamic perspective by varying the mesh size $h>0$ and the nonlocal L\'evy index $\alpha \in (0,2]$. We show that the discrete system converges to the fractional NLS as $h \rightarrow 0$ below the energy space by directly estimating the difference between the discrete and continuum solutions in $L^2(\mathbb{T})$ using the periodic Strichartz estimates. The sharp convergence rate via the finite-difference method is shown to be $O(h^{\frac{\alpha}{2+\alpha}})$ in the energy space. On the other hand for a fixed $h > 0$, the linear stability analysis on a family of continuous wave (CW) solutions reveals a rich dynamical structure of CW waves due to the interplay between nonlinearity, nonlocal dispersion, and discreteness. The gain spectrum is derived to understand the role of $h$ and $\alpha$ in triggering higher mode excitations. The transition from the quadratic dependence of maximum gain on the amplitude of CW solutions to the linear dependence, due to the lattice structure, is shown analytically and numerically.
We propose a predictor-corrector adaptive method for the study of hyperbolic partial differential equations (PDEs) under uncertainty. Constructed around the framework of stochastic finite volume (SFV) methods, our approach circumvents sampling schemes or simulation ensembles while also preserving fundamental properties, in particular hyperbolicity of the resulting systems and conservation of the discrete solutions. Furthermore, we augment the existing SFV theory with a priori convergence results for statistical quantities, in particular push-forward densities, which we demonstrate through numerical experiments. By linking refinement indicators to regions of the physical and stochastic spaces, we drive anisotropic refinements of the discretizations, introducing new degrees of freedom (DoFs) where deemed profitable. To illustrate our proposed method, we consider a series of numerical examples for non-linear hyperbolic PDEs based on Burgers' and Euler's equations.
The wave equation is an important physical partial differential equation, and in recent years, deep learning has shown promise in accelerating or replacing traditional numerical methods for solving it. However, existing deep learning methods suffer from high data acquisition costs, low training efficiency, and insufficient generalization capability for boundary conditions. To address these issues, this paper proposes an unsupervised learning method for the wave equation based on finite difference residual constraints. We construct a novel finite difference residual constraint based on structured grids and finite difference methods, as well as an unsupervised training strategy, enabling convolutional neural networks to train without data and predict the forward propagation process of waves. Experimental results show that finite difference residual constraints have advantages over physics-informed neural networks (PINNs) type physical information constraints, such as easier fitting, lower computational costs, and stronger source term generalization capability, making our method more efficient in training and potent in application.
Recently a new class of nonlinearly partitioned Runge-Kutta (NPRK) methods was proposed for nonlinearly partitioned systems of ordinary differential equations, $y' = F(y,y)$. The target class of problems are ones in which different scales, stiffnesses, or physics are coupled in a nonlinear way, wherein the desired partition cannot be written in a classical additive or component-wise fashion. Here we use rooted-tree analysis to derive full order conditions for NPRK$_M$ methods, where $M$ denotes the number of nonlinear partitions. Due to the nonlinear coupling and thereby mixed product differentials, it turns out the standard node-colored rooted-tree analysis used in analyzing ODE integrators does not naturally apply. Instead we develop a new edge-colored rooted-tree framework to address the nonlinear coupling. The resulting order conditions are enumerated, provided directly for up to 4th order with $M=2$ and 3rd-order with $M=3$, and related to existing order conditions of additive and partitioned RK methods.