Network slicing is one of the major catalysts to turn future telecommunication networks into versatile service platforms. Along with its benefits, network slicing is introducing new challenges in the development of sustainable network operations. In fact, guaranteeing slices requirements comes at the cost of additional energy consumption, in comparison to non-sliced networks. Yet, one of the main goals of operators is to offer the diverse 5G and beyond services, while ensuring energy efficiency. To this end, we study the problem of slice activation/deactivation, with the objective of minimizing energy consumption and maximizing the users quality of service (QoS). To solve the problem, we rely on two Multi-Armed Bandit (MAB) agents to derive decisions at individual base stations. Our evaluations are conducted using a real-world traffic dataset collected over an operational network in a medium size French city. Numerical results reveal that our proposed solutions provide approximately 11-14\% energy efficiency improvement compared to a configuration where all the slice instances are active, while maintaining the same level of QoS. Moreover, our work explicitly shows the impact of prioritizing the energy over QoS, and vice versa.
This work develops a novel approach toward performance guarantees for all links in arbitrarily large wireless networks. It introduces a spatial network calculus, consisting of spatial regulation properties for stationary point processes and the first steps of a calculus for this regulation, which can be seen as an extension to space of the classical network calculus. Specifically, two classes of regulations are defined: one includes ball regulation and shot-noise regulation, which are shown to be equivalent and upper constraint interference; the other one includes void regulation, which lower constraints the signal power. These regulations are defined both in the strong and weak sense: the former requires the regulations to hold everywhere in space, whereas the latter only requires the regulations to hold as observed by a jointly stationary point process. Using this approach, we derive performance guarantees in device-to-device, ad hoc, and cellular networks under proper regulations. We give universal bounds on the SINR for all links, which gives link service guarantees based on information-theoretic achievability. They are combined with classical network calculus to provide end-to-end latency guarantees for all packets in wireless queuing networks. Such guarantees do not exist in networks that are not spatially regulated, e.g., Poisson networks.
Online Continual Learning (OCL) addresses the problem of training neural networks on a continuous data stream where multiple classification tasks emerge in sequence. In contrast to offline Continual Learning, data can be seen only once in OCL. In this context, replay-based strategies have achieved impressive results and most state-of-the-art approaches are heavily depending on them. While Knowledge Distillation (KD) has been extensively used in offline Continual Learning, it remains under-exploited in OCL, despite its potential. In this paper, we theoretically analyze the challenges in applying KD to OCL. We introduce a direct yet effective methodology for applying Momentum Knowledge Distillation (MKD) to many flagship OCL methods and demonstrate its capabilities to enhance existing approaches. In addition to improving existing state-of-the-arts accuracy by more than $10\%$ points on ImageNet100, we shed light on MKD internal mechanics and impacts during training in OCL. We argue that similar to replay, MKD should be considered a central component of OCL.
Integrated sensing and communication (ISAC) capability is envisioned as one key feature for future cellular networks. Classical half-duplex (HD) radar sensing is conducted in a "first-emit-then-listen" manner. One challenge to realize HD ISAC lies in the discrepancy of the two systems' time scheduling for transmitting and receiving. This difficulty can be overcome by full-duplex (FD) transceivers. Besides, ISAC generally has to comprise its communication rate due to realizing sensing functionality. This loss can be compensated by the emerging reconfigurable intelligent surface (RIS) technology. This paper considers the joint design of beamforming, power allocation and signal processing in a FD uplink communication system aided by RIS, which is a highly nonconvex problem. To resolve this challenge, via leveraging the cutting-the-edge majorization-minimization (MM) and penalty-dual-decomposition (PDD) methods, we develop an iterative solution that optimizes all variables via using convex optimization techniques. Besides, by wisely exploiting alternative direction method of multipliers (ADMM) and optimality analysis, we further develop a low complexity solution that updates all variables analytically and runs highly efficiently. Numerical results are provided to verify the effectiveness and efficiency of our proposed algorithms and demonstrate the significant performance boosting by employing RIS in the FD ISAC system.
We consider the following network model motivated, in particular, by blockchains and peer-to-peer live streaming. Data packet flows arrive at the network nodes and need to be disseminated to all other nodes. Packets are relayed through the network via links of finite capacity. A packet leaves the network when it is disseminated to all nodes. Our focus is on two communication disciplines, which determine the order in which packets are transmitted over each link, namely {\em Random-Useful} (RU) and {\em Oldest-Useful} (OU). We show that RU has the maximum stability region in a general network. For the OU we demonstrate that, somewhat surprisingly, it does {\em not} in general have the maximum stability region. We prove that OU does achieve maximum stability in the important special case of a symmetric network, given by the full graph with equal capacities on all links and equal arrival rates at all nodes. We also give other stability results, and compare different disciplines' performances in a symmetric system via simulation. Finally, we study the cumulative delays experienced by a packet as it propagates through the symmetric system, specifically the delay asymptotic behavior as $N \to \infty$. We put forward some conjectures about this behavior, supported by heuristic arguments and simulation experiments.
An anonymous dynamic network is a network of indistinguishable processes whose communication links may appear or disappear unpredictably over time. Previous research has shown that deterministically computing an arbitrary function of a multiset of input values given to these processes takes only a linear number of communication rounds (Di Luna-Viglietta, FOCS 2022). However, fast algorithms for anonymous dynamic networks rely on the construction and transmission of large data structures called "history trees", whose size is polynomial in the number of processes. This approach is unfeasible if the network is congested, and only messages of logarithmic size can be sent through its links. Observe that sending a large message piece by piece over several rounds is not in itself a solution, due to the anonymity of the processes combined with the dynamic nature of the network. Moreover, it is known that certain basic tasks such as all-to-all token dissemination (by means of single-token forwarding) require $\Omega(n^2/\log n)$ rounds in congested networks (Dutta et al., SODA 2013). In this work, we develop a series of practical and efficient techniques that make it possible to use history trees in congested anonymous dynamic networks. Among other applications, we show how to compute arbitrary functions in such networks in $O(n^3)$ communication rounds, greatly improving upon previous state-of-the-art algorithms for congested networks.
As surgical interventions trend towards minimally invasive approaches, Concentric Tube Robots (CTRs) have been explored for various interventions such as brain, eye, fetoscopic, lung, cardiac and prostate surgeries. Arranged concentrically, each tube is rotated and translated independently to move the robot end-effector position, making kinematics and control challenging. Classical model-based approaches have been previously investigated with developments in deep learning based approaches outperforming more classical approaches in both forward kinematics and shape estimation. We propose a deep reinforcement learning approach to control where we generalise across two to four systems, an element not yet achieved in any other deep learning approach for CTRs. In this way we explore the likely robustness of the control approach. Also investigated is the impact of rotational constraints applied on tube actuation and the effects on error metrics. We evaluate inverse kinematics errors and tracking error for path following tasks and compare the results to those achieved using state of the art methods. Additionally, as current results are performed in simulation, we also investigate a domain transfer approach known as domain randomization and evaluate error metrics as an initial step towards hardware implementation. Finally, we compare our method to a Jacobian approach found in literature.
Audio is one of the most used ways of human communication, but at the same time it can be easily misused to trick people. With the revolution of AI, the related technologies are now accessible to almost everyone thus making it simple for the criminals to commit crimes and forgeries. In this work, we introduce a neural network method to develop a classifier that will blindly classify an input audio as real or mimicked; the word 'blindly' refers to the ability to detect mimicked audio without references or real sources. The proposed model was trained on a set of important features extracted from a large dataset of audios to get a classifier that was tested on the same set of features from different audios. The data was extracted from two raw datasets, especially composed for this work; an all English dataset and a mixed dataset (Arabic plus English). These datasets have been made available, in raw form, through GitHub for the use of the research community at //github.com/SaSs7/Dataset. For the purpose of comparison, the audios were also classified through human inspection with the subjects being the native speakers. The ensued results were interesting and exhibited formidable accuracy.
The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.
Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.
Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.