亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study a linear high-dimensional regression model in a semi-supervised setting, where for many observations only the vector of covariates $X$ is given with no response $Y$. We do not make any sparsity assumptions on the vector of coefficients, and aim at estimating $\mathrm{Var}(Y|X)$. We propose an estimator, which is unbiased, consistent, and asymptotically normal. This estimator can be improved by adding zero-estimators arising from the unlabelled data. Adding zero-estimators does not affect the bias and potentially can reduce variance. In order to achieve optimal improvement, many zero-estimators should be used, but this raises the problem of estimating many parameters. Therefore, we introduce covariate selection algorithms that identify which zero-estimators should be used in order to improve the above estimator. We further illustrate our approach for other estimators, and present an algorithm that improves estimation for any given variance estimator. Our theoretical results are demonstrated in a simulation study.

相關內容

When a deep learning model is deployed in the wild, it can encounter test data drawn from distributions different from the training data distribution and suffer drop in performance. For safe deployment, it is essential to estimate the accuracy of the pre-trained model on the test data. However, the labels for the test inputs are usually not immediately available in practice, and obtaining them can be expensive. This observation leads to two challenging tasks: (1) unsupervised accuracy estimation, which aims to estimate the accuracy of a pre-trained classifier on a set of unlabeled test inputs; (2) error detection, which aims to identify mis-classified test inputs. In this paper, we propose a principled and practically effective framework that simultaneously addresses the two tasks. The proposed framework iteratively learns an ensemble of models to identify mis-classified data points and performs self-training to improve the ensemble with the identified points. Theoretical analysis demonstrates that our framework enjoys provable guarantees for both accuracy estimation and error detection under mild conditions readily satisfied by practical deep learning models. Along with the framework, we proposed and experimented with two instantiations and achieved state-of-the-art results on 59 tasks. For example, on iWildCam, one instantiation reduces the estimation error for unsupervised accuracy estimation by at least 70% and improves the F1 score for error detection by at least 4.7% compared to existing methods.

A notable challenge of leveraging Electronic Health Records (EHR) for treatment effect assessment is the lack of precise information on important clinical variables, including the treatment received and the response. Both treatment information and response often cannot be accurately captured by readily available EHR features and require labor intensive manual chart review to precisely annotate, which limits the number of available gold standard labels on these key variables. We consider average treatment effect (ATE) estimation under such a semi-supervised setting with a large number of unlabeled samples containing both confounders and imperfect EHR features for treatment and response. We derive the efficient influence function for ATE and use it to construct a semi-supervised multiple machine learning (SMMAL) estimator. We showcase that our SMMAL estimator is semi-parametric efficient with B-spline regression under low-dimensional smooth models. We develop the adaptive sparsity/model doubly robust estimation under high-dimensional logistic propensity score and outcome regression models. Results from simulation studies support the validity of our SMMAL method and its superiority over supervised benchmarks.

We propose the family of generalized resubstitution classifier error estimators based on empirical measures. These error estimators are computationally efficient and do not require re-training of classifiers. The plain resubstitution error estimator corresponds to choosing the standard empirical measure. Other choices of empirical measure lead to bolstered, posterior-probability, Gaussian-process, and Bayesian error estimators; in addition, we propose bolstered posterior-probability error estimators as a new family of generalized resubstitution estimators. In the two-class case, we show that a generalized resubstitution estimator is consistent and asymptotically unbiased, regardless of the distribution of the features and label, if the corresponding generalized empirical measure converges uniformly to the standard empirical measure and the classification rule has a finite VC dimension. A generalized resubstitution estimator typically has hyperparameters that can be tuned to control its bias and variance, which adds flexibility. Numerical experiments with various classification rules trained on synthetic data assess the thefinite-sample performance of several representative generalized resubstitution error estimators. In addition, results of an image classification experiment using the LeNet-5 convolutional neural network and the MNIST data set demonstrate the potential of this class of error estimators in deep learning for computer vision.

We provide a new theory for nodewise regression when the residuals from a fitted factor model are used. We apply our results to the analysis of the consistency of Sharpe ratio estimators when there are many assets in a portfolio. We allow for an increasing number of assets as well as time observations of the portfolio. Since the nodewise regression is not feasible due to the unknown nature of idiosyncratic errors, we provide a feasible-residual-based nodewise regression to estimate the precision matrix of errors which is consistent even when number of assets, p, exceeds the time span of the portfolio, n. In another new development, we also show that the precision matrix of returns can be estimated consistently, even with an increasing number of factors and p>n. We show that: (1) with p>n, the Sharpe ratio estimators are consistent in global minimum-variance and mean-variance portfolios; and (2) with p>n, the maximum Sharpe ratio estimator is consistent when the portfolio weights sum to one; and (3) with p<<n, the maximum-out-of-sample Sharpe ratio estimator is consistent.

We provide finite sample bounds on the Normal approximation to the law of the least squares estimator of the projection parameters normalized by the sandwich-based standard errors. Our results hold in the increasing dimension setting and under minimal assumptions on the data generating distribution. In particular, we do not assume a linear regression function and only require the existence of finitely many moments for the response and the covariates. Furthermore, we construct confidence sets for the projection parameters in the form of hyper-rectangles and establish finite sample bounds on their coverage and accuracy. We derive analogous results for partial correlations among the entries of sub-Gaussian vectors. \end{abstract}

In this paper, we study the properties of nonparametric least squares regression using deep neural networks. We derive non-asymptotic upper bounds for the prediction error of the empirical risk minimizer for feedforward deep neural regression. Our error bounds achieve minimax optimal rate and significantly improve over the existing ones in the sense that they depend polynomially on the dimension of the predictor, instead of exponentially on dimension. We show that the neural regression estimator can circumvent the curse of dimensionality under the assumption that the predictor is supported on an approximate low-dimensional manifold or a set with low Minkowski dimension. These assumptions differ from the structural condition imposed on the target regression function and are weaker and more realistic than the exact low-dimensional manifold support assumption. We investigate how the prediction error of the neural regression estimator depends on the structure of neural networks and propose a notion of network relative efficiency between two types of neural networks, which provides a quantitative measure for evaluating the relative merits of different network structures. To establish these results, we derive a novel approximation error bound for the H\"older smooth functions with a positive smoothness index using ReLU activated neural networks, which may be of independent interest. Our results are derived under weaker assumptions on the data distribution and the neural network structure than those in the existing literature.

We study random design linear regression with no assumptions on the distribution of the covariates and with a heavy-tailed response variable. In this distribution-free regression setting, we show that boundedness of the conditional second moment of the response given the covariates is a necessary and sufficient condition for achieving nontrivial guarantees. As a starting point, we prove an optimal version of the classical in-expectation bound for the truncated least squares estimator due to Gy\"{o}rfi, Kohler, Krzy\.{z}ak, and Walk. However, we show that this procedure fails with constant probability for some distributions despite its optimal in-expectation performance. Then, combining the ideas of truncated least squares, median-of-means procedures, and aggregation theory, we construct a non-linear estimator achieving excess risk of order $d/n$ with an optimal sub-exponential tail. While existing approaches to linear regression for heavy-tailed distributions focus on proper estimators that return linear functions, we highlight that the improperness of our procedure is necessary for attaining nontrivial guarantees in the distribution-free setting.

Doubly truncated data arise in many areas such as astronomy, econometrics, and medical studies. For the regression analysis with doubly truncated response variables, the existence of double truncation may bring bias for estimation as well as affect variable selection. We propose a simultaneous estimation and variable selection procedure for the doubly truncated regression, allowing a diverging number of regression parameters. To remove the bias introduced by the double truncation, a Mann-Whitney-type loss function is used. The adaptive LASSO penalty is then added into the loss function to achieve simultaneous estimation and variable selection. An iterative algorithm is designed to optimize the resulting objective function. We establish the consistency and the asymptotic normality of the proposed estimator. The oracle property of the proposed selection procedure is also obtained. Some simulation studies are conducted to show the finite sample performance of the proposed approach. We also apply the method to analyze a real astronomical data.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.

北京阿比特科技有限公司