亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Gr\"unbaum's equipartition problem asked if for any measure on $\mathbb{R}^d$ there are always $d$ hyperplanes which divide $\mathbb{R}^d$ into $2^d$ $\mu$-equal parts. This problem is known to have a positive answer for $d\le 3$ and a negative one for $d\ge 5$. A variant of this question is to require the hyperplanes to be mutually orthogonal. This variant is known to have a positive answer for $d\le 2$ and there is reason to expect it to have a negative answer for $d\ge 3$. In this note we exhibit measures that prove this. Additionally, we describe an algorithm that checks if a set of $8n$ in $\mathbb{R}^3$ can be split evenly by $3$ mutually orthogonal planes. To our surprise, it seems the probability that a random set of $8$ points chosen uniformly and independently in the unit cube does not admit such a partition is less than $0.001$.

相關內容

An infinite sequence of sets $\left\{B_{n}\right\}_{n\in\mathbb{N}}$ is said to be a heterochromatic sequence from an infinite sequence of families $\left\{ \mathcal{F}_{n} \right\}_{n \in \mathbb{N}}$, if there exists a strictly increasing sequence of natural numbers $\left\{ i_{n}\right\}_{n \in \mathbb{N}}$ such that for all $n \in \mathbb{N}$ we have $B_{n} \in \mathcal{F}_{i_{n}}$. In this paper, we have proved that if for each $n\in\mathbb{N}$, $\mathcal{F}_n$ is a family of {\em nicely shaped} convex sets in $\mathbb{R}^d$ such that each heterochromatic sequence $\left\{B_{n}\right\}_{n\in\mathbb{N}}$ from $\left\{ \mathcal{F}_{n} \right\}_{n \in \mathbb{N}}$ contains at least $k+2$ sets that can be pierced by a single $k$-flat ($k$-dimensional affine space) then all but finitely many families in $\left\{\mathcal{F}_{n}\right\}_{n\in \mathbb{N}}$ can be pierced by finitely many $k$-flats. This result can be considered as a {\em countably colorful} generalization of the $(\aleph_0, k+2)$-theorem proved by Keller and Perles (Symposium on Computational Geometry 2022). We have also established the tightness of our result by proving a number of no-go theorems.

We introduce a simple natural deduction system for reasoning with judgments of the form "there exists a proof of $\varphi$" to explore the notion of judgmental existence following Martin-L\"{o}f's methodology of distinguishing between judgments and propositions. In this system, the existential judgment can be internalized into a modal notion of propositional existence that is closely related to truncation modality, a key tool for obtaining proof irrelevance, and lax modality. We provide a computational interpretation in the style of the Curry-Howard isomorphism for the existence modality and show that the corresponding system has some desirable properties such as strong normalization or subject reduction.

We prove lower bounds for the randomized approximation of the embedding $\ell_1^m \rightarrow \ell_\infty^m$ based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix $N \in \mathbb{R}^{n \times m}$. These lower bounds reflect the increasing difficulty of the problem for $m \to \infty$, namely, a term $\sqrt{\log m}$ in the complexity $n$. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity $n$ only exhibits a $(\log\log m)$-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order $n^{1/2} ( \log n)^{-1/2}$.

In the Euclidean $k$-means problems we are given as input a set of $n$ points in $\mathbb{R}^d$ and the goal is to find a set of $k$ points $C\subseteq \mathbb{R}^d$, so as to minimize the sum of the squared Euclidean distances from each point in $P$ to its closest center in $C$. In this paper, we formally explore connections between the $k$-coloring problem on graphs and the Euclidean $k$-means problem. Our results are as follows: $\bullet$ For all $k\ge 3$, we provide a simple reduction from the $k$-coloring problem on regular graphs to the Euclidean $k$-means problem. Moreover, our technique extends to enable a reduction from a structured max-cut problem (which may be considered as a partial 2-coloring problem) to the Euclidean $2$-means problem. Thus, we have a simple and alternate proof of the NP-hardness of Euclidean 2-means problem. $\bullet$ In the other direction, we mimic the $O(1.7297^n)$ time algorithm of Williams [TCS'05] for the max-cut of problem on $n$ vertices to obtain an algorithm for the Euclidean 2-means problem with the same runtime, improving on the naive exhaustive search running in $2^n\cdot \text{poly}(n,d)$ time. $\bullet$ We prove similar results and connections as above for the Euclidean $k$-min-sum problem.

A word~$w$ has a border $u$ if $u$ is a non-empty proper prefix and suffix of $u$. A word~$w$ is said to be \emph{closed} if $w$ is of length at most $1$ or if $w$ has a border that occurs exactly twice in $w$. A word~$w$ is said to be \emph{privileged} if $w$ is of length at most $1$ or if $w$ has a privileged border that occurs exactly twice in $w$. Let $C_k(n)$ (resp.~$P_k(n)$) be the number of length-$n$ closed (resp. privileged) words over a $k$-letter alphabet. In this paper, we improve existing upper and lower bounds on $C_k(n)$ and $P_k(n)$. We completely resolve the asymptotic behaviour of $C_k(n)$. We also nearly completely resolve the asymptotic behaviour of $P_k(n)$ by giving a family of upper and lower bounds that are separated by a factor that grows arbitrarily slowly.

Consider the linear ill-posed problems of the form $\sum_{i=1}^{b} A_i x_i =y$, where, for each $i$, $A_i$ is a bounded linear operator between two Hilbert spaces $X_i$ and ${\mathcal Y}$. When $b$ is huge, solving the problem by an iterative method using the full gradient at each iteration step is both time-consuming and memory insufficient. Although randomized block coordinate decent (RBCD) method has been shown to be an efficient method for well-posed large-scale optimization problems with a small amount of memory, there still lacks a convergence analysis on the RBCD method for solving ill-posed problems. In this paper, we investigate the convergence property of the RBCD method with noisy data under either {\it a priori} or {\it a posteriori} stopping rules. We prove that the RBCD method combined with an {\it a priori} stopping rule yields a sequence that converges weakly to a solution of the problem almost surely. We also consider the early stopping of the RBCD method and demonstrate that the discrepancy principle can terminate the iteration after finite many steps almost surely. For a class of ill-posed problems with special tensor product form, we obtain strong convergence results on the RBCD method. Furthermore, we consider incorporating the convex regularization terms into the RBCD method to enhance the detection of solution features. To illustrate the theory and the performance of the method, numerical simulations from the imaging modalities in computed tomography and compressive temporal imaging are reported.

We consider a wide class of generalized Radon transforms $\mathcal R$, which act in $\mathbb{R}^n$ for any $n\ge 2$ and integrate over submanifolds of any codimension $N$, $1\le N\le n-1$. Also, we allow for a fairly general reconstruction operator $\mathcal A$. The main requirement is that $\mathcal A$ be a Fourier integral operator with a phase function, which is linear in the phase variable. We consider the task of image reconstruction from discrete data $g_{j,k} = (\mathcal R f)_{j,k} + \eta_{j,k}$. We show that the reconstruction error $N_\epsilon^{\text{rec}}=\mathcal A \eta_{j,k}$ satisfies $N^{\text{rec}}(\check x;x_0)=\lim_{\epsilon\to0}N_\epsilon^{\text{rec}}(x_0+\epsilon\check x)$, $\check x\in D$. Here $x_0$ is a fixed point, $D\subset\mathbb{R}^n$ is a bounded domain, and $\eta_{j,k}$ are independent, but not necessarily identically distributed, random variables. $N^{\text{rec}}$ and $N_\epsilon^{\text{rec}}$ are viewed as continuous random functions of the argument $\check x$ (random fields), and the limit is understood in the sense of probability distributions. Under some conditions on the first three moments of $\eta_{j,k}$ (and some other not very restrictive conditions on $x_0$ and $\mathcal A$), we prove that $N^{\text{rec}}$ is a zero mean Gaussian random field and explicitly compute its covariance. We also present a numerical experiment with a cone beam transform in $\mathbb{R}^3$, which shows an excellent match between theoretical predictions and simulated reconstructions.

Optimal transport and the Wasserstein distance $\mathcal{W}_p$ have recently seen a number of applications in the fields of statistics, machine learning, data science, and the physical sciences. These applications are however severely restricted by the curse of dimensionality, meaning that the number of data points needed to estimate these problems accurately increases exponentially in the dimension. To alleviate this problem, a number of variants of $\mathcal{W}_p$ have been introduced. We focus here on one of these variants, namely the max-sliced Wasserstein metric $\overline{\mathcal{W}}_p$. This metric reduces the high-dimensional minimization problem given by $\mathcal{W}_p$ to a maximum of one-dimensional measurements in an effort to overcome the curse of dimensionality. In this note we derive concentration results and upper bounds on the expectation of $\overline{\mathcal{W}}_p$ between the true and empirical measure on unbounded reproducing kernel Hilbert spaces. We show that, under quite generic assumptions, probability measures concentrate uniformly fast in one-dimensional subspaces, at (nearly) parametric rates. Our results rely on an improvement of currently known bounds for $\overline{\mathcal{W}}_p$ in the finite-dimensional case.

We provide the sandwiched R\'enyi divergence of order $\alpha\in(\frac{1}{2},1)$, as well as its induced quantum information quantities, with an operational interpretation in the characterization of the exact strong converse exponents of quantum tasks. Specifically, we consider (a) smoothing of the max-relative entropy, (b) quantum privacy amplification, and (c) quantum information decoupling. We solve the problem of determining the exact strong converse exponents for these three tasks, with the performance being measured by the fidelity or purified distance. The results are given in terms of the sandwiched R\'enyi divergence of order $\alpha\in(\frac{1}{2},1)$, and its induced quantum R\'enyi conditional entropy and quantum R\'enyi mutual information. This is the first time to find the precise operational meaning for the sandwiched R\'enyi divergence with R\'enyi parameter in the interval $\alpha\in(\frac{1}{2},1)$.

The classical Andr\'{a}sfai--Erd\H{o}s--S\'{o}s Theorem states that for $\ell\ge 2$, every $n$-vertex $K_{\ell+1}$-free graph with minimum degree greater than $\frac{3\ell-4}{3\ell-1}n$ must be $\ell$-partite. We establish a simple criterion for $r$-graphs, $r \geq 2$, to exhibit an Andr\'{a}sfai--Erd\H{o}s--S\'{o}s type property, also known as degree-stability. This leads to a classification of most previously studied hypergraph families with this property. An immediate application of this result, combined with a general theorem by Keevash--Lenz--Mubayi, solves the spectral Tur\'{a}n problems for a large class of hypergraphs. For every $r$-graph $F$ with degree-stability, there is a simple algorithm to decide the $F$-freeness of an $n$-vertex $r$-graph with minimum degree greater than $(\pi(F) - \varepsilon_F)\binom{n}{r-1}$ in time $O(n^r)$, where $\varepsilon_F >0$ is a constant. In particular, for the complete graph $K_{\ell+1}$, we can take $\varepsilon_{K_{\ell+1}} = (3\ell^2-\ell)^{-1}$, and this bound is tight up to some multiplicative constant factor unless $\mathbf{W[1]} = \mathbf{FPT}$. Based on a result by Chen--Huang--Kanj--Xia, we further show that for every fixed $C > 0$, this problem cannot be solved in time $n^{o(\ell)}$ if we replace $\varepsilon_{K_{\ell+1}}$ with $(C\ell)^{-1}$ unless $\mathbf{ETH}$ fails. Furthermore, we apply the degree-stability of $K_{\ell+1}$ to decide the $K_{\ell+1}$-freeness of graphs whose size is close to the Tur\'{a}n bound in time $(\ell+1)n^2$, partially improving a recent result by Fomin--Golovach--Sagunov--Simonov. As an intermediate step, we show that for a specific class of $r$-graphs $F$, the (surjective) $F$-coloring problem can be solved in time $O(n^r)$, provided the input $r$-graph has $n$ vertices and a large minimum degree, refining several previous results.

北京阿比特科技有限公司