亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate and robust classification of diseases is important for proper diagnosis and treatment. However, medical datasets often face challenges related to limited sample sizes and inherent imbalanced distributions, due to difficulties in data collection and variations in disease prevalence across different types. In this paper, we introduce an Iterative Online Image Synthesis (IOIS) framework to address the class imbalance problem in medical image classification. Our framework incorporates two key modules, namely Online Image Synthesis (OIS) and Accuracy Adaptive Sampling (AAS), which collectively target the imbalance classification issue at both the instance level and the class level. The OIS module alleviates the data insufficiency problem by generating representative samples tailored for online training of the classifier. On the other hand, the AAS module dynamically balances the synthesized samples among various classes, targeting those with low training accuracy. To evaluate the effectiveness of our proposed method in addressing imbalanced classification, we conduct experiments on the HAM10000 and APTOS datasets. The results obtained demonstrate the superiority of our approach over state-of-the-art methods as well as the effectiveness of each component. The source code will be released upon acceptance.

相關內容

Detection of malignant lesions on mammography images is extremely important for early breast cancer diagnosis. In clinical practice, images are acquired from two different angles, and radiologists can fully utilize information from both views, simultaneously locating the same lesion. However, for automatic detection approaches such information fusion remains a challenge. In this paper, we propose a new model called MAMM-Net, which allows the processing of both mammography views simultaneously by sharing information not only on an object level, as seen in existing works, but also on a feature level. MAMM-Net's key component is the Fusion Layer, based on deformable attention and designed to increase detection precision while keeping high recall. Our experiments show superior performance on the public DDSM dataset compared to the previous state-of-the-art model, while introducing new helpful features such as lesion annotation on pixel-level and classification of lesions malignancy.

The use of multimodal data in assisted diagnosis and segmentation has emerged as a prominent area of interest in current research. However, one of the primary challenges is how to effectively fuse multimodal features. Most of the current approaches focus on the integration of multimodal features while ignoring the correlation and consistency between different modal features, leading to the inclusion of potentially irrelevant information. To address this issue, we introduce an innovative Multimodal Information Cross Transformer (MicFormer), which employs a dual-stream architecture to simultaneously extract features from each modality. Leveraging the Cross Transformer, it queries features from one modality and retrieves corresponding responses from another, facilitating effective communication between bimodal features. Additionally, we incorporate a deformable Transformer architecture to expand the search space. We conducted experiments on the MM-WHS dataset, and in the CT-MRI multimodal image segmentation task, we successfully improved the whole-heart segmentation DICE score to 85.57 and MIoU to 75.51. Compared to other multimodal segmentation techniques, our method outperforms by margins of 2.83 and 4.23, respectively. This demonstrates the efficacy of MicFormer in integrating relevant information between different modalities in multimodal tasks. These findings hold significant implications for multimodal image tasks, and we believe that MicFormer possesses extensive potential for broader applications across various domains. Access to our method is available at //github.com/fxxJuses/MICFormer

Robot swarms hold immense potential for performing complex tasks far beyond the capabilities of individual robots. However, the challenge in unleashing this potential is the robots' limited sensory capabilities, which hinder their ability to detect and adapt to unknown obstacles in real-time. To overcome this limitation, we introduce a novel robot swarm control method with an indirect obstacle detector using a smoothed particle hydrodynamics (SPH) model. The indirect obstacle detector can predict the collision with an obstacle and its collision point solely from the robot's velocity information. This approach enables the swarm to effectively and accurately navigate environments without the need for explicit obstacle detection, significantly enhancing their operational robustness and efficiency. Our method's superiority is quantitatively validated through a comparative analysis, showcasing its significant navigation and pattern formation improvements under obstacle-unaware conditions.

Spiking neural networks drawing inspiration from biological constraints of the brain promise an energy-efficient paradigm for artificial intelligence. However, challenges exist in identifying guiding principles to train these networks in a robust fashion. In addition, training becomes an even more difficult problem when incorporating biological constraints of excitatory and inhibitory connections. In this work, we identify several key factors, such as low initial firing rates and diverse inhibitory spiking patterns, that determine the overall ability to train spiking networks with various ratios of excitatory to inhibitory neurons on AI-relevant datasets. The results indicate networks with the biologically realistic 80:20 excitatory:inhibitory balance can reliably train at low activity levels and in noisy environments. Additionally, the Van Rossum distance, a measure of spike train synchrony, provides insight into the importance of inhibitory neurons to increase network robustness to noise. This work supports further biologically-informed large-scale networks and energy efficient hardware implementations.

In dynamic motion generation tasks, including contact and collisions, small changes in policy parameters can lead to extremely different returns. For example, in soccer, the ball can fly in completely different directions with a similar heading motion by slightly changing the hitting position or the force applied to the ball or when the friction of the ball varies. However, it is difficult to imagine that completely different skills are needed for heading a ball in different directions. In this study, we proposed a multitask reinforcement learning algorithm for adapting a policy to implicit changes in goals or environments in a single motion category with different reward functions or physical parameters of the environment. We evaluated the proposed method on the ball heading task using a monopod robot model. The results showed that the proposed method can adapt to implicit changes in the goal positions or the coefficients of restitution of the ball, whereas the standard domain randomization approach cannot cope with different task settings.

Artificial intelligence (AI) in healthcare, especially in medical imaging, faces challenges due to data scarcity and privacy concerns. Addressing these, we introduce Med-DDPM, a diffusion model designed for 3D semantic brain MRI synthesis. This model effectively tackles data scarcity and privacy issues by integrating semantic conditioning. This involves the channel-wise concatenation of a conditioning image to the model input, enabling control in image generation. Med-DDPM demonstrates superior stability and performance compared to existing 3D brain imaging synthesis methods. It generates diverse, anatomically coherent images with high visual fidelity. In terms of dice score accuracy in the tumor segmentation task, Med-DDPM achieves 0.6207, close to the 0.6531 accuracy of real images, and outperforms baseline models. Combined with real images, it further increases segmentation accuracy to 0.6675, showing the potential of our proposed method for data augmentation. This model represents the first use of a diffusion model in 3D semantic brain MRI synthesis, producing high-quality images. Its semantic conditioning feature also shows potential for image anonymization in biomedical imaging, addressing data and privacy issues. We provide the code and model weights for Med-DDPM on our GitHub repository (//github.com/mobaidoctor/med-ddpm/) to support reproducibility.

As assembly tasks grow in complexity, collaboration among multiple robots becomes essential for task completion. However, centralized task planning has become inadequate for adapting to the increasing intelligence and versatility of robots, along with rising customized orders. There is a need for efficient and automated planning mechanisms capable of coordinating diverse robots for collaborative assembly. To this end, we propose a Stackelberg game-theoretic learning approach. By leveraging Stackelberg games, we characterize robot collaboration through leader-follower interaction to enhance strategy seeking and ensure task completion. To enhance applicability across tasks, we introduce a novel multi-agent learning algorithm: Stackelberg double deep Q-learning, which facilitates automated assembly strategy seeking and multi-robot coordination. Our approach is validated through simulated assembly tasks. Comparison with three alternative multi-agent learning methods shows that our approach achieves the shortest task completion time for tasks. Furthermore, our approach exhibits robustness against both accidental and deliberate environmental perturbations.

High-performance catalysts are crucial for sustainable energy conversion and human health. However, the discovery of catalysts faces challenges due to the absence of efficient approaches to navigating vast and high-dimensional structure and composition spaces. In this study, we propose a high-throughput computational catalyst screening approach integrating density functional theory (DFT) and Bayesian Optimization (BO). Within the BO framework, we propose an uncertainty-aware atomistic machine learning model, UPNet, which enables automated representation learning directly from high-dimensional catalyst structures and achieves principled uncertainty quantification. Utilizing a constrained expected improvement acquisition function, our BO framework simultaneously considers multiple evaluation criteria. Using the proposed methods, we explore catalyst discovery for the CO2 reduction reaction. The results demonstrate that our approach achieves high prediction accuracy, facilitates interpretable feature extraction, and enables multicriteria design optimization, leading to significant reduction of computing power and time (10x reduction of required DFT calculations) in high-performance catalyst discovery.

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.

北京阿比特科技有限公司