亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Stokes system with Flory-Huggins energy functional. A convex splitting is applied to the chemical potential, which in turns leads to the implicit treatment for the singular logarithmic terms and the surface diffusion term, and an explicit update for the expansive concave term. The convective term for the phase variable, as well as the coupled term in the Stokes equation, are approximated in a semi-implicit manner. In the spatial discretization, the marker and cell (MAC) difference method is applied, which evaluates the velocity components, the pressure and the phase variable at different cell locations. Such an approach ensures the divergence-free feature of the discrete velocity, and this property plays an important role in the analysis. The positivity-preserving property and the unique solvability of the proposed numerical scheme are theoretically justified, utilizing the singular nature of the logarithmic term as the phase variable approaches the singular limit values. An unconditional energy stability analysis is standard, as an outcome of the convex-concave decomposition technique. A convergence analysis with accompanying error estimate is provided for the proposed numerical scheme. In particular, a higher order consistency analysis, accomplished by supplementary functions, is performed to ensure the separation properties of numerical solution. In turn, using the approach of rough and refined error (RRE) estimates, we are able to derive an optimal rate convergence. To conclude, several numerical experiments are presented to validate the theoretical analysis.

相關內容

Numerous error estimates have been carried out on various numerical schemes for subdiffusion equations. Unfortunately most error bounds suffer from a factor $1/(1-\alpha)$ or $\Gamma(1-\alpha)$, which blows up as the fractional order $\alpha\to 1^-$, a phenomenon not consistent with regularity of the continuous problem and numerical simulations in practice. Although efforts have been made to avoid the factor blow-up phenomenon, a robust analysis of error estimates still remains incomplete for numerical schemes with general nonuniform time steps. In this paper, we will consider the $\alpha$-robust error analysis of convolution-type schemes for subdiffusion equations with general nonuniform time-steps, and provide explicit factors in error bounds with dependence information on $\alpha$ and temporal mesh sizes. As illustration, we apply our abstract framework to two widely used schemes, i.e., the L1 scheme and Alikhanov's scheme. Our rigorous proofs reveal that the stability and convergence of a class of convolution-type schemes is $\alpha$-robust, i.e., the factor will not blowup while $\alpha\to 1^-$ with general nonuniform time steps even when rather general initial regularity condition is considered.

Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type artificial dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

Quantum dynamics can be simulated on a quantum computer by exponentiating elementary terms from the Hamiltonian in a sequential manner. However, such an implementation of Trotter steps has gate complexity depending on the total Hamiltonian term number, comparing unfavorably to algorithms using more advanced techniques. We develop methods to perform faster Trotter steps with complexity sublinear in the number of terms. We achieve this for a class of Hamiltonians whose interaction strength decays with distance according to power law. Our methods include one based on a recursive block encoding and one based on an average-cost simulation, overcoming the normalization-factor barrier of these advanced quantum simulation techniques. We also realize faster Trotter steps when certain blocks of Hamiltonian coefficients have low rank. Combining with a tighter error analysis, we show that it suffices to use $\left(\eta^{1/3}n^{1/3}+\frac{n^{2/3}}{\eta^{2/3}}\right)n^{1+o(1)}$ gates to simulate uniform electron gas with $n$ spin orbitals and $\eta$ electrons in second quantization in real space, asymptotically improving over the best previous work. We obtain an analogous result when the external potential of nuclei is introduced under the Born-Oppenheimer approximation. We prove a circuit lower bound when the Hamiltonian coefficients take a continuum range of values, showing that generic $n$-qubit $2$-local Hamiltonians with commuting terms require at least $\Omega(n^2)$ gates to evolve with accuracy $\epsilon=\Omega(1/poly(n))$ for time $t=\Omega(\epsilon)$. Our proof is based on a gate-efficient reduction from the approximate synthesis of diagonal unitaries within the Hamming weight-$2$ subspace, which may be of independent interest. Our result thus suggests the use of Hamiltonian structural properties as both necessary and sufficient to implement Trotter steps with lower gate complexity.

In this paper, we propose and analyze a second-order time-stepping numerical scheme for the inhomogeneous backward fractional Feynman-Kac equation with nonsmooth initial data. The complex parameters and time-space coupled Riemann-Liouville fractional substantial integral and derivative in the equation bring challenges on numerical analysis and computations. The nonlocal operators are approximated by using the weighted and shifted Gr\"{u}nwald difference (WSGD) formula. Then a second-order WSGD scheme is obtained after making some initial corrections. Moreover, the error estimates of the proposed time-stepping scheme are rigorously established without the regularity requirement on the exact solution. Finally, some numerical experiments are performed to validate the efficiency and accuracy of the proposed numerical scheme.

In causal inference, sensitivity analysis is important to assess the robustness of study conclusions to key assumptions. We perform sensitivity analysis of the assumption that missing outcomes are missing completely at random. We follow a Bayesian approach, which is nonparametric for the outcome distribution and can be combined with an informative prior on the sensitivity parameter. We give insight in the posterior and provide theoretical guarantees in the form of Bernstein-von Mises theorems for estimating the mean outcome. We study different parametrisations of the model involving Dirichlet process priors on the distribution of the outcome and on the distribution of the outcome conditional on the subject being treated. We show that these parametrisations incorporate a prior on the sensitivity parameter in different ways and discuss the relative merits. We also present a simulation study, showing the performance of the methods in finite sample scenarios.

This paper takes a look at omnibus tests of goodness of fit in the context of reweighted Anderson-Darling tests and makes threefold contributions. The first contribution is to provide a geometric understanding. It is argued that the test statistic with minimum variance for exchangeable distributional deviations can serve as a good general-purpose test. The second contribution is to propose better omnibus tests, called circularly symmetric tests and obtained by circularizing reweighted Anderson-Darling test statistics or, more generally, test statistics based on the observed order statistics. The resulting tests are called circularized tests. A limited but arguably convincing simulation study on finite-sample performance demonstrates that circularized tests have good performance, as they typically outperform their parent methods in the simulation study. The third contribution is to establish new large-sample results.

We are interested in the discretisation of a drift-diffusion system in the framework of hybrid finite volume (HFV) methods on general polygonal/polyhedral meshes. The system under study is composed of two anisotropic and nonlinear convection-diffusion equations with nonsymmetric tensors, coupled with a Poisson equation and describes in particular semiconductor devices immersed in a magnetic field. We introduce a new scheme based on an entropy-dissipation relation and prove that the scheme admits solutions with values in admissible sets - especially, the computed densities remain positive. Moreover, we show that the discrete solutions to the scheme converge exponentially fast in time towards the associated discrete thermal equilibrium. Several numerical tests confirm our theoretical results. Up to our knowledge, this scheme is the first one able to discretise anisotropic drift-diffusion systems while preserving the bounds on the densities.

In this paper, we present a novel stochastic normal map-based algorithm ($\mathsf{norM}\text{-}\mathsf{SGD}$) for nonconvex composite-type optimization problems and discuss its convergence properties. Using a time window-based strategy, we first analyze the global convergence behavior of $\mathsf{norM}\text{-}\mathsf{SGD}$ and it is shown that every accumulation point of the generated sequence of iterates $\{\boldsymbol{x}^k\}_k$ corresponds to a stationary point almost surely and in an expectation sense. The obtained results hold under standard assumptions and extend the more limited convergence guarantees of the basic proximal stochastic gradient method. In addition, based on the well-known Kurdyka-{\L}ojasiewicz (KL) analysis framework, we provide novel point-wise convergence results for the iterates $\{\boldsymbol{x}^k\}_k$ and derive convergence rates that depend on the underlying KL exponent $\boldsymbol{\theta}$ and the step size dynamics $\{\alpha_k\}_k$. Specifically, for the popular step size scheme $\alpha_k=\mathcal{O}(1/k^\gamma)$, $\gamma \in (\frac23,1]$, (almost sure) rates of the form $\|\boldsymbol{x}^k-\boldsymbol{x}^*\| = \mathcal{O}(1/k^p)$, $p \in (0,\frac12)$, can be established. The obtained rates are faster than related and existing convergence rates for $\mathsf{SGD}$ and improve on the non-asymptotic complexity bounds for $\mathsf{norM}\text{-}\mathsf{SGD}$.

In this paper, we are interested in constructing a scheme solving compressible Navier--Stokes equations, with desired properties including high order spatial accuracy, conservation, and positivity-preserving of density and internal energy under a standard hyperbolic type CFL constraint on the time step size, e.g., $\Delta t=\mathcal O(\Delta x)$. Strang splitting is used to approximate convection and diffusion operators separately. For the convection part, i.e., the compressible Euler equation, the high order accurate postivity-preserving Runge--Kutta discontinuous Galerkin method can be used. For the diffusion part, the equation of internal energy instead of the total energy is considered, and a first order semi-implicit time discretization is used for the ease of achieving positivity. A suitable interior penalty discontinuous Galerkin method for the stress tensor can ensure the conservation of momentum and total energy for any high order polynomial basis. In particular, positivity can be proven with $\Delta t=\mathcal{O}(\Delta x)$ if the Laplacian operator of internal energy is approximated by the $\mathbb{Q}^k$ spectral element method with $k=1,2,3$. So the full scheme with $\mathbb{Q}^k$ ($k=1,2,3$) basis is conservative and positivity-preserving with $\Delta t=\mathcal{O}(\Delta x)$, which is robust for demanding problems such as solutions with low density and low pressure induced by high-speed shock diffraction. Even though the full scheme is only first order accurate in time, numerical tests indicate that higher order polynomial basis produces much better numerical solutions, e.g., better resolution for capturing the roll-ups during shock reflection.

北京阿比特科技有限公司