We study channel simulation under common randomness-assistance in the finite-blocklength regime and identify the smooth channel max-information as a linear program one-shot converse on the minimal simulation cost for fixed error tolerance. We show that this one-shot converse can be achieved exactly using no-signaling assisted codes, and approximately achieved using common randomness-assisted codes. Our one-shot converse thus takes on an analogous role to the celebrated meta-converse in the complementary problem of channel coding, and find tight relations between these two bounds. We asymptotically expand our bounds on the simulation cost for discrete memoryless channels, leading to the second-order as well as the moderate deviation rate expansion, which can be expressed in terms of the channel capacity and channel dispersion known from noisy channel coding. Our techniques extend to discrete memoryless broadcast channels. In stark contrast to the elusive broadcast channel capacity problem, we show that the reverse problem of broadcast channel simulation under common randomness-assistance allows for an efficiently computable single-letter characterization of the asymptotic rate region in terms of the broadcast channel's multi-partite mutual information. Finally, we present a Blahut-Arimoto type algorithm to compute the rate region efficiently.
Identification over quantum broadcast channels is considered. As opposed to the information transmission task, the decoder only identifies whether a message of his choosing was sent or not. This relaxation allows for a double-exponential code size. An achievable identification region is derived for a quantum broadcast channel, and a full characterization for the class of classical-quantum broadcast channels. The identification capacity region of the single-mode pure-loss bosonic broadcast channel is obtained as a consequence. Furthermore, the results are demonstrated for the quantum erasure broadcast channel, where our region is suboptimal, but improves on the best previously known bounds.
In this paper, we propose a novel method of formulating an NP-hard wireless channel assignment problem as a higher-order unconstrained binary optimization (HUBO), where the Grover adaptive search (GAS) is used to provide a quadratic speedup for solving the problem. The conventional method relies on a one-hot encoding of the channel indices, resulting in a quadratic formulation. By contrast, we conceive ascending and descending binary encodings of the channel indices, construct a specific quantum circuit, and derive the exact numbers of qubits and gates required by GAS. Our analysis clarifies that the proposed HUBO formulation significantly reduces the number of qubits and the query complexity compared with the conventional quadratic formulation. This advantage is achieved at the cost of an increased number of quantum gates, which we demonstrate can be reduced by our proposed descending binary encoding.
This article proposes a novel framework that utilizes an over-the-air Brain-Computer Interface (BCI) to learn Metaverse users' expectations. By interpreting users' brain activities, our framework can help to optimize physical resources and enhance Quality-of-Experience (QoE) for users. To achieve this, we leverage a Wireless Edge Server (WES) to process electroencephalography (EEG) signals via uplink wireless channels, thus eliminating the computational burden for Metaverse users' devices. As a result, the WES can learn human behaviors, adapt system configurations, and allocate radio resources to tailor personalized user settings. Despite the potential of BCI, the inherent noisy wireless channels and uncertainty of the EEG signals make the related resource allocation and learning problems especially challenging. We formulate the joint learning and resource allocation problem as mixed integer programming problem. Our solution involves two algorithms that are a hybrid learning algorithm and a meta-learning algorithm. The hybrid learning algorithm can effectively find the solution for the formulated problem. Specifically, the meta-learning algorithm can further exploit the neurodiversity of the EEG signals across multiple users, leading to higher classification accuracy. Extensive simulation results with real-world BCI datasets show the effectiveness of our framework with low latency and high EEG signal classification accuracy.
Channel prediction is critical to address the channel aging issue in mobile scenarios. Existing channel prediction techniques are mainly designed for discrete channel prediction, which can only predict the future channel in a fixed time slot per frame, while the other intra-frame channels are usually recovered by interpolation. However, these approaches suffer from a serious interpolation loss, especially for mobile millimeter wave communications. To solve this challenging problem, we propose a tensor neural ordinary differential equation (TN-ODE) based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels. Specifically, inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning, we first utilize the neural ODE model to predict future continuous-time channels. To improve the channel prediction accuracy and reduce computational complexity, we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low dimensional learnable transform. Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes.
This work proposes a neural network to extensively exploit spatial information for multichannel joint speech separation, denoising and dereverberation, named SpatialNet.In the short-time Fourier transform (STFT) domain, the proposed network performs end-to-end speech enhancement. It is mainly composed of interleaved narrow-band and cross-band blocks to respectively exploit narrow-band and cross-band spatial information. The narrow-band blocks process frequencies independently, and use self-attention mechanism and temporal convolutional layers to respectively perform spatial-feature-based speaker clustering and temporal smoothing/filtering. The cross-band blocks processes frames independently, and use full-band linear layer and frequency convolutional layers to respectively learn the correlation between all frequencies and adjacent frequencies. Experiments are conducted on various simulated and real datasets, and the results show that 1) the proposed network achieves the state-of-the-art performance on almost all tasks; 2) the proposed network suffers little from the spectral generalization problem; and 3) the proposed network is indeed performing speaker clustering (demonstrated by attention maps).
Whereas Laplacian and modularity based spectral clustering is apt to dense graphs, recent results show that for sparse ones, the non-backtracking spectrum is the best candidate to find assortative clusters of nodes. Here belief propagation in the sparse stochastic block model is derived with arbitrary given model parameters that results in a non-linear system of equations; with linear approximation, the spectrum of the non-backtracking matrix is able to specify the number $k$ of clusters. Then the model parameters themselves can be estimated by the EM algorithm. Bond percolation in the assortative model is considered in the following two senses: the within- and between-cluster edge probabilities decrease with the number of nodes and edges coming into existence in this way are retained with probability $\beta$. As a consequence, the optimal $k$ is the number of the structural real eigenvalues (greater than $\sqrt{c}$, where $c$ is the average degree) of the non-backtracking matrix of the graph. Assuming, these eigenvalues $\mu_1 >\dots > \mu_k$ are distinct, the multiple phase transitions obtained for $\beta$ are $\beta_i =\frac{c}{\mu_i^2}$; further, at $\beta_i$ the number of detectable clusters is $i$, for $i=1,\dots ,k$. Inflation-deflation techniques are also discussed to classify the nodes themselves, which can be the base of the sparse spectral clustering.
Origami structures have been widely explored in robotics due to their many potential advantages. Origami robots can be very compact, as well as cheap and efficient to produce. In particular, they can be constructed in a flat format using modern manufacturing techniques. Rotational motion is essential for robotics, and a variety of origami rotational joints have been proposed in the literature. However, few of these are even approximately flat-foldable. One potential enabler of flat origami rotational joints is the inclusion of lightweight pneumatic pouches which actuate the origami's folds; however, pouch actuators only enable a relatively small amount of rotational displacement. The previously proposed Four-Vertex Origami is a flat-foldable structure which provides an angular multiplier for a pouch actuator, but suffers from a degenerate state. This paper presents a novel rigid origami, the Self-Lock Origami, which eliminates this degeneracy by slightly relaxing the assumption of flat-foldability. This joint is analysed in terms of a trade-off between the angular multiplier and the mechanical advantage. Furthermore, the Self-Lock Origami is a modular joint which can be connected to similar or different joints to produce complex movements for various applications; three different manipulator designs are introduced as a proof of concept.
The exponential-family random graph models (ERGMs) have emerged as an important framework for modeling social networks for a wide variety of relational types. ERGMs for valued networks are less well-developed than their unvalued counterparts, and pose particular computational challenges. Network data with edge values on the non-negative integers (count-valued networks) is an important such case, with examples ranging from the magnitude of migration and trade flows between places to the frequency of interactions and encounters between individuals. Here, we propose an efficient parallelable subsampled maximum pseudo-likelihood estimation (MPLE) scheme for count-valued ERGMs, and compare its performance with existing Contrastive Divergence (CD) and Monte Carlo Maximum Likelihood Estimation (MCMLE) approaches via a simulation study based on migration flow networks in two U.S. states. Our results suggest that edge value variance is a key factor in method performance, while network size mainly influences their relative merits in computational time. For small-variance networks, all methods perform well in point estimations while CD greatly overestimates uncertainties, and MPLE underestimates them for dependence terms; all methods have fast estimation for small networks, but CD and subsampled multi-core MPLE provides speed advantages as network size increases. For large-variance networks, both MPLE and MCMLE offer high-quality estimates of coefficients and their uncertainty, but MPLE is significantly faster than MCMLE; MPLE is also a better seeding method for MCMLE than CD, as the latter makes MCMLE more prone to convergence failure.
Reconfigurable intelligent surfaces (RISs) allow controlling the propagation environment in wireless networks through reconfigurable elements. Recently, beyond diagonal RISs (BD-RISs) have been proposed as novel RIS architectures whose scattering matrix is not limited to being diagonal. However, BDRISs have been studied assuming continuous-value scattering matrices, which are hard to implement in practice. In this paper, we address this problem by proposing two solutions to realize discrete-value group and fully connected RISs. First, we propose scalar-discrete RISs, in which each entry of the RIS impedance matrix is independently discretized. Second, we propose vector-discrete RISs, where the entries in each group of the RIS impedance matrix are jointly discretized. In both solutions, the codebook is designed offline such as to minimize the distortion caused in the RIS impedance matrix by the discretization operation. Numerical results show that vector-discrete RISs achieve higher performance than scalar discrete RISs at the cost of increased optimization complexity. Furthermore, fewer resolution bits per impedance are necessary to achieve the performance upper bound as the group size of the group connected architecture increases. In particular, only a single resolution bit is sufficient in fully connected RISs to approximately achieve the performance upper bound.
For the 6G mobile networks, in-situ model downloading has emerged as an important use case to enable real-time adaptive artificial intelligence on edge devices. However, the simultaneous downloading of diverse and high-dimensional models to multiple devices over wireless links presents a significant communication bottleneck. To overcome the bottleneck, we propose the framework of model broadcasting and assembling (MBA), which represents the first attempt on leveraging reusable knowledge, referring to shared parameters among tasks, to enable parameter broadcasting to reduce communication overhead. The MBA framework comprises two key components. The first, the MBA protocol, defines the system operations including parameter selection from a model library, power control for broadcasting, and model assembling at devices. The second component is the joint design of parameter-selection-and-power-control (PS-PC), which provides guarantees on devices' model performance and minimizes the downloading latency. The corresponding optimization problem is simplified by decomposition into the sequential PS and PC sub-problems without compromising its optimality. The PS sub-problem is solved efficiently by designing two efficient algorithms. On one hand, the low-complexity algorithm of greedy parameter selection features the construction of candidate model sets and a selection metric, both of which are designed under the criterion of maximum reusable knowledge among tasks. On the other hand, the optimal tree-search algorithm gains its efficiency via the proposed construction of a compact binary tree pruned using model architecture constraints and an intelligent branch-and-bound search. Given optimal PS, the optimal PC policy is derived in closed form. Extensive experiments demonstrate the substantial reduction in downloading latency achieved by the proposed MBA compared to traditional model downloading.