亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern numerical analysis is executed on discrete data, of which numerical difference computation is one of the cores and is indispensable. Nevertheless, difference algorithms have a critical weakness in their sensitivity to noise, which has long posed a challenge in various fields including signal processing. Difference is an extension or generalization of differential in the discrete domain. However, due to the finite interval in discrete calculation, there is a failure in meeting the most fundamental definition of differential, where dy and dx are both infinitesimal (Leibniz) or the limit of dx is 0 (Cauchy). In this regard, the generalization of differential to difference does not hold. To address this issue, we depart from the original derivative approach, construct a finite interval-based differential, and further generalize it to obtain the difference by convolution. Based on this theory, we present a variety of difference operators suitable for practical signal processing. Experimental results demonstrate that these difference operators possess exceptional signal processing capabilities, including high noise immunity.

相關內容

信號處理期刊采用了理論與實踐的各個方面的信號處理。它以原始研究工作,教程和評論文章以及實際發展情況為特色。它旨在將知識和經驗快速傳播給從事信號處理研究,開發或實際應用的工程師和科學家。該期刊涵蓋的主題領域包括:信號理論;隨機過程; 檢測和估計;光譜分析;過濾;信號處理系統;軟件開發;圖像處理; 模式識別; 光信號處理;數字信號處理; 多維信號處理;通信信號處理;生物醫學信號處理;地球物理和天體信號處理;地球資源信號處理;聲音和振動信號處理;數據處理; 遙感; 信號處理技術;雷達信號處理;聲納信號處理;工業應用;新的應用程序。 官網地址:

The proliferation of deep learning applications in healthcare calls for data aggregation across various institutions, a practice often associated with significant privacy concerns. This concern intensifies in medical image analysis, where privacy-preserving mechanisms are paramount due to the data being sensitive in nature. Federated learning, which enables cooperative model training without direct data exchange, presents a promising solution. Nevertheless, the inherent vulnerabilities of federated learning necessitate further privacy safeguards. This study addresses this need by integrating differential privacy, a leading privacy-preserving technique, into a federated learning framework for medical image classification. We introduce a novel differentially private federated learning model and meticulously examine its impacts on privacy preservation and model performance. Our research confirms the existence of a trade-off between model accuracy and privacy settings. However, we demonstrate that strategic calibration of the privacy budget in differential privacy can uphold robust image classification performance while providing substantial privacy protection.

In this paper, practically computable low-order approximations of potentially high-dimensional differential equations driven by geometric rough paths are proposed and investigated. In particular, equations are studied that cover the linear setting, but we allow for a certain type of dissipative nonlinearity in the drift as well. In a first step, a linear subspace is found that contains the solution space of the underlying rough differential equation (RDE). This subspace is associated to covariances of linear Ito-stochastic differential equations which is shown exploiting a Gronwall lemma for matrix differential equations. Orthogonal projections onto the identified subspace lead to a first exact reduced order system. Secondly, a linear map of the RDE solution (quantity of interest) is analyzed in terms of redundant information meaning that state variables are found that do not contribute to the quantity of interest. Once more, a link to Ito-stochastic differential equations is used. Removing such unnecessary information from the RDE provides a further dimension reduction without causing an error. Finally, we discretize a linear parabolic rough partial differential equation in space. The resulting large-order RDE is subsequently tackled with the exact reduction techniques studied in this paper. We illustrate the enormous complexity reduction potential in the corresponding numerical experiments.

Wasserstein gradient flows on probability measures have found a host of applications in various optimization problems. They typically arise as the continuum limit of exchangeable particle systems evolving by some mean-field interaction involving a gradient-type potential. However, in many problems, such as in multi-layer neural networks, the so-called particles are edge weights on large graphs whose nodes are exchangeable. Such large graphs are known to converge to continuum limits called graphons as their size grow to infinity. We show that the Euclidean gradient flow of a suitable function of the edge-weights converges to a novel continuum limit given by a curve on the space of graphons that can be appropriately described as a gradient flow or, more technically, a curve of maximal slope. Several natural functions on graphons, such as homomorphism functions and the scalar entropy, are covered by our set-up, and the examples have been worked out in detail.

Singularly perturbed problems present inherent difficulty due to the presence of a thin boundary layer in its solution. To overcome this difficulty, we propose using deep operator networks (DeepONets), a method previously shown to be effective in approximating nonlinear operators between infinite-dimensional Banach spaces. In this paper, we demonstrate for the first time the application of DeepONets to one-dimensional singularly perturbed problems, achieving promising results that suggest their potential as a robust tool for solving this class of problems. We consider the convergence rate of the approximation error incurred by the operator networks in approximating the solution operator, and examine the generalization gap and empirical risk, all of which are shown to converge uniformly with respect to the perturbation parameter. By utilizing Shishkin mesh points as locations of the loss function, we conduct several numerical experiments that provide further support for the effectiveness of operator networks in capturing the singular boundary layer behavior.

Probabilistic user modeling is essential for building machine learning systems in the ubiquitous cases with humans in the loop. However, modern advanced user models, often designed as cognitive behavior simulators, are incompatible with modern machine learning pipelines and computationally prohibitive for most practical applications. We address this problem by introducing widely-applicable differentiable surrogates for bypassing this computational bottleneck; the surrogates enable computationally efficient inference with modern cognitive models. We show experimentally that modeling capabilities comparable to the only available solution, existing likelihood-free inference methods, are achievable with a computational cost suitable for online applications. Finally, we demonstrate how AI-assistants can now use cognitive models for online interaction in a menu-search task, which has so far required hours of computation during interaction.

We propose a novel framework for discovering Stochastic Partial Differential Equations (SPDEs) from data. The proposed approach combines the concepts of stochastic calculus, variational Bayes theory, and sparse learning. We propose the extended Kramers-Moyal expansion to express the drift and diffusion terms of an SPDE in terms of state responses and use Spike-and-Slab priors with sparse learning techniques to efficiently and accurately discover the underlying SPDEs. The proposed approach has been applied to three canonical SPDEs, (a) stochastic heat equation, (b) stochastic Allen-Cahn equation, and (c) stochastic Nagumo equation. Our results demonstrate that the proposed approach can accurately identify the underlying SPDEs with limited data. This is the first attempt at discovering SPDEs from data, and it has significant implications for various scientific applications, such as climate modeling, financial forecasting, and chemical kinetics.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

Generative adversarial networks (GANs) are a hot research topic recently. GANs have been widely studied since 2014, and a large number of algorithms have been proposed. However, there is few comprehensive study explaining the connections among different GANs variants, and how they have evolved. In this paper, we attempt to provide a review on various GANs methods from the perspectives of algorithms, theory, and applications. Firstly, the motivations, mathematical representations, and structure of most GANs algorithms are introduced in details. Furthermore, GANs have been combined with other machine learning algorithms for specific applications, such as semi-supervised learning, transfer learning, and reinforcement learning. This paper compares the commonalities and differences of these GANs methods. Secondly, theoretical issues related to GANs are investigated. Thirdly, typical applications of GANs in image processing and computer vision, natural language processing, music, speech and audio, medical field, and data science are illustrated. Finally, the future open research problems for GANs are pointed out.

北京阿比特科技有限公司