亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Causal inference in spatial settings is met with unique challenges and opportunities. On one hand, a unit's outcome can be affected by the exposure at many locations, leading to interference. On the other hand, unmeasured spatial variables can confound the effect of interest. Our work has two overarching goals. First, using causal diagrams, we illustrate that spatial confounding and interference can manifest as each other, meaning that investigating the presence of one can lead to wrongful conclusions in the presence of the other, and that statistical dependencies in the exposure variable can render standard analyses invalid. This can have crucial implications for analyzing data with spatial or other dependencies, and for understanding the effect of interventions on dependent units. Secondly, we propose a parametric approach to mitigate bias from local and neighborhood unmeasured spatial confounding and account for interference simultaneously. This approach is based on simultaneous modeling of the exposure and the outcome while accounting for the presence of spatially-structured unmeasured predictors of both variables. We illustrate our approach with a simulation study and with an analysis of the local and interference effects of sulfur dioxide emissions from power plants on cardiovascular mortality.

相關內容

When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized experiment studying the effects of vaccination encouragement on flu-related hospital visits.

In Causal Discovery with latent variables, We define two data paradigms: definite data: a single-skeleton structure with observed nodes single-value, and indefinite data: a set of multi-skeleton structures with observed nodes multi-value. Multi,skeletons induce low sample utilization and multi values induce incapability of the distribution assumption, both leading that recovering causal relations from indefinite data is, as of yet, largely unexplored. We design the causal strength variational model to settle down these two problems. Specifically, we leverage the causal strength instead of independent noise as latent variable to mediate evidence lower bound. By this design ethos, The causal strength of different skeletons is regarded as a distribution and can be expressed as a single-valued causal graph matrix. Moreover, considering the latent confounders, we disentangle the causal graph G into two relatisubgraphs O and C. O contains pure relations between observed nodes, while C represents the relations from latent variables to observed nodes. We summarize the above designs as Confounding Disentanglement Causal Discovery (biCD), which is tailored to learn causal representation from indefinite data under the latent confounding. Finally, we conduct comprehensive experiments on synthetic and real-world data to demonstrate the effectiveness of our method.

The affective reasoning task is a set of emerging affect-based tasks in conversation, including Emotion Recognition in Conversation (ERC),Emotion-Cause Pair Extraction (ECPE), and Emotion-Cause Span Recognition (ECSR). Existing methods make various assumptions on the apparent relationship while neglecting the essential causal model due to the nonuniqueness of skeletons and unobservability of implicit causes. This paper settled down the above two problems and further proposed Conversational Affective Causal Discovery (CACD). It is a novel causal discovery method showing how to discover causal relationships in a conversation via designing a common skeleton and generating a substitute for implicit causes. CACD contains two steps: (i) building a common centering one graph node causal skeleton for all utterances in variable-length conversations; (ii) Causal Auto-Encoder (CAE) correcting the skeleton to yield causal representation through generated implicit causes and known explicit causes. Comprehensive experiments demonstrate that our novel method significantly outperforms the SOTA baselines in six affect-related datasets on the three tasks.

Subset selection tasks, arise in recommendation systems and search engines and ask to select a subset of items that maximize the value for the user. The values of subsets often display diminishing returns, and hence, submodular functions have been used to model them. If the inputs defining the submodular function are known, then existing algorithms can be used. In many applications, however, inputs have been observed to have social biases that reduce the utility of the output subset. Hence, interventions to improve the utility are desired. Prior works focus on maximizing linear functions -- a special case of submodular functions -- and show that fairness constraint-based interventions can not only ensure proportional representation but also achieve near-optimal utility in the presence of biases. We study the maximization of a family of submodular functions that capture functions arising in the aforementioned applications. Our first result is that, unlike linear functions, constraint-based interventions cannot guarantee any constant fraction of the optimal utility for this family of submodular functions. Our second result is an algorithm for submodular maximization. The algorithm provably outputs subsets that have near-optimal utility for this family under mild assumptions and that proportionally represent items from each group. In empirical evaluation, with both synthetic and real-world data, we observe that this algorithm improves the utility of the output subset for this family of submodular functions over baselines.

In many fields, including environmental epidemiology, researchers strive to understand the joint impact of a mixture of exposures. This involves analyzing a vector of exposures rather than a single exposure, with the most significant exposure sets being unknown. Examining every possible interaction or effect modification in a high-dimensional vector of candidates can be challenging or even impossible. To address this challenge, we propose a method for the automatic identification and estimation of exposure sets in a mixture with explanatory power, baseline covariates that modify the impact of an exposure and sets of exposures that have synergistic non-additive relationships. We define these parameters in a realistic nonparametric statistical model and use machine learning methods to identify variables sets and estimate nuisance parameters for our target parameters to avoid model misspecification. We establish a prespecified target parameter applied to variable sets when identified and use cross-validation to train efficient estimators employing targeted maximum likelihood estimation for our target parameter. Our approach applies a shift intervention targeting individual variable importance, interaction, and effect modification based on the data-adaptively determined sets of variables. Our methodology is implemented in the open-source SuperNOVA package in R. We demonstrate the utility of our method through simulations, showing that our estimator is efficient and asymptotically linear under conditions requiring fast convergence of certain regression functions. We apply our method to the National Institute of Environmental Health Science mixtures workshop data, revealing correct identification of antagonistic and agonistic interactions built into the data. Additionally, we investigate the association between exposure to persistent organic pollutants and longer leukocyte telomere length.

Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities on various datasets.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.

北京阿比特科技有限公司