In Causal Discovery with latent variables, We define two data paradigms: definite data: a single-skeleton structure with observed nodes single-value, and indefinite data: a set of multi-skeleton structures with observed nodes multi-value. Multi,skeletons induce low sample utilization and multi values induce incapability of the distribution assumption, both leading that recovering causal relations from indefinite data is, as of yet, largely unexplored. We design the causal strength variational model to settle down these two problems. Specifically, we leverage the causal strength instead of independent noise as latent variable to mediate evidence lower bound. By this design ethos, The causal strength of different skeletons is regarded as a distribution and can be expressed as a single-valued causal graph matrix. Moreover, considering the latent confounders, we disentangle the causal graph G into two relatisubgraphs O and C. O contains pure relations between observed nodes, while C represents the relations from latent variables to observed nodes. We summarize the above designs as Confounding Disentanglement Causal Discovery (biCD), which is tailored to learn causal representation from indefinite data under the latent confounding. Finally, we conduct comprehensive experiments on synthetic and real-world data to demonstrate the effectiveness of our method.
Understanding causal relations is vital in scientific discovery. The process of causal structure learning involves identifying causal graphs from observational data to understand such relations. Usually, a central server performs this task, but sharing data with the server poses privacy risks. Federated learning can solve this problem, but existing solutions for federated causal structure learning make unrealistic assumptions about data and lack convergence guarantees. FedC2SL is a federated constraint-based causal structure learning scheme that learns causal graphs using a federated conditional independence test, which examines conditional independence between two variables under a condition set without collecting raw data from clients. FedC2SL requires weaker and more realistic assumptions about data and offers stronger resistance to data variability among clients. FedPC and FedFCI are the two variants of FedC2SL for causal structure learning in causal sufficiency and causal insufficiency, respectively. The study evaluates FedC2SL using both synthetic datasets and real-world data against existing solutions and finds it demonstrates encouraging performance and strong resilience to data heterogeneity among clients.
A treatment policy defines when and what treatments are applied to affect some outcome of interest. Data-driven decision-making requires the ability to predict what happens if a policy is changed. Existing methods that predict how the outcome evolves under different scenarios assume that the tentative sequences of future treatments are fixed in advance, while in practice the treatments are determined stochastically by a policy and may depend, for example, on the efficiency of previous treatments. Therefore, the current methods are not applicable if the treatment policy is unknown or a counterfactual analysis is needed. To handle these limitations, we model the treatments and outcomes jointly in continuous time, by combining Gaussian processes and point processes. Our model enables the estimation of a treatment policy from observational sequences of treatments and outcomes, and it can predict the interventional and counterfactual progression of the outcome after an intervention on the treatment policy (in contrast with the causal effect of a single treatment). We show with real-world and semi-synthetic data on blood glucose progression that our method can answer causal queries more accurately than existing alternatives.
Recommendation systems aim to predict users' feedback on items not exposed to them. Confounding bias arises due to the presence of unmeasured variables (e.g., the socio-economic status of a user) that can affect both a user's exposure and feedback. Existing methods either (1) make untenable assumptions about these unmeasured variables or (2) directly infer latent confounders from users' exposure. However, they cannot guarantee the identification of counterfactual feedback, which can lead to biased predictions. In this work, we propose a novel method, i.e., identifiable deconfounder (iDCF), which leverages a set of proxy variables (e.g., observed user features) to resolve the aforementioned non-identification issue. The proposed iDCF is a general deconfounded recommendation framework that applies proximal causal inference to infer the unmeasured confounders and identify the counterfactual feedback with theoretical guarantees. Extensive experiments on various real-world and synthetic datasets verify the proposed method's effectiveness and robustness.
Learning individualized treatment rules (ITRs) is an important topic in precision medicine. Current literature mainly focuses on deriving ITRs from a single source population. We consider the observational data setting when the source population differs from a target population of interest. Compared with causal generalization for the average treatment effect which is a scalar quantity, ITR generalization poses new challenges due to the need to model and generalize the rules based on a prespecified class of functions which may not contain the unrestricted true optimal ITR. The aim of this paper is to develop a weighting framework to mitigate the impact of such misspecification and thus facilitate the generalizability of optimal ITRs from a source population to a target population. Our method seeks covariate balance over a non-parametric function class characterized by a reproducing kernel Hilbert space and can improve many ITR learning methods that rely on weights. We show that the proposed method encompasses importance weights and overlap weights as two extreme cases, allowing for a better bias-variance trade-off in between. Numerical examples demonstrate that the use of our weighting method can greatly improve ITR estimation for the target population compared with other weighting methods.
Node classification on graphs is a significant task with a wide range of applications, including social analysis and anomaly detection. Even though graph neural networks (GNNs) have produced promising results on this task, current techniques often presume that label information of nodes is accurate, which may not be the case in real-world applications. To tackle this issue, we investigate the problem of learning on graphs with label noise and develop a novel approach dubbed Consistent Graph Neural Network (CGNN) to solve it. Specifically, we employ graph contrastive learning as a regularization term, which promotes two views of augmented nodes to have consistent representations. Since this regularization term cannot utilize label information, it can enhance the robustness of node representations to label noise. Moreover, to detect noisy labels on the graph, we present a sample selection technique based on the homophily assumption, which identifies noisy nodes by measuring the consistency between the labels with their neighbors. Finally, we purify these confident noisy labels to permit efficient semantic graph learning. Extensive experiments on three well-known benchmark datasets demonstrate the superiority of our CGNN over competing approaches.
Estimating heterogeneous treatment effects from observational data is a crucial task across many fields, helping policy and decision-makers take better actions. There has been recent progress on robust and efficient methods for estimating the conditional average treatment effect (CATE) function, but these methods often do not take into account the risk of hidden confounding, which could arbitrarily and unknowingly bias any causal estimate based on observational data. We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on the level of hidden confounding. We derive the B-Learner by adapting recent results for sharp and valid bounds of the average treatment effect (Dorn et al., 2021) into the framework given by Kallus & Oprescu (2023) for robust and model-agnostic learning of conditional distributional treatment effects. The B-Learner can use any function estimator such as random forests and deep neural networks, and we prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods. Semi-synthetic experimental comparisons validate the theoretical findings, and we use real-world data to demonstrate how the method might be used in practice.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.