Physical attacks form one of the most severe threats against secure computing platforms. Their criticality arises from their corresponding threat model: By, e.g., passively measuring an integrated circuit's (IC's) environment during a security-related operation, internal secrets may be disclosed. Furthermore, by actively disturbing the physical runtime environment of an IC, an adversary can cause a specific, exploitable misbehavior. The set of physical attacks consists of techniques that apply either globally or locally. When compared to global techniques, local techniques exhibit a much higher precision, hence having the potential to be used in advanced attack scenarios. However, using physical techniques with additional spatial dependency expands the parameter search space exponentially. In this work, we present and compare two techniques, namely laser logic state imaging (LLSI) and lock-in thermography (LIT), that can be used to discover sub-circuitry of an entirely unknown IC based on optical and thermal principles. We show that the time required to identify specific regions can be drastically reduced, thus lowering the complexity of physical attacks requiring positional information. Our case study on an Intel H610 Platform Controller Hub showcases that, depending on the targeted voltage rail, our technique reduces the search space by around 90 to 98 percent.
A popular track of network compression approach is Quantization aware Training (QAT), which accelerates the forward pass during the neural network training and inference. However, not much prior efforts have been made to quantize and accelerate the backward pass during training, even though that contributes around half of the training time. This can be partly attributed to the fact that errors of low-precision gradients during backward cannot be amortized by the training objective as in the QAT setting. In this work, we propose to solve this problem by incorporating the gradients into the computation graph of the next training iteration via a hypernetwork. Various experiments on CIFAR-10 dataset with different CNN network architectures demonstrate that our hypernetwork-based approach can effectively reduce the negative effect of gradient quantization noise and successfully quantizes the gradients to INT4 with only 0.64 accuracy drop for VGG-16 on CIFAR-10.
As language technologies gain prominence in real-world settings, it is important to understand how changes to language affect reader perceptions. This can be formalized as the causal effect of varying a linguistic attribute (e.g., sentiment) on a reader's response to the text. In this paper, we introduce Text-Transport, a method for estimation of causal effects from natural language under any text distribution. Current approaches for valid causal effect estimation require strong assumptions about the data, meaning the data from which one can estimate valid causal effects often is not representative of the actual target domain of interest. To address this issue, we leverage the notion of distribution shift to describe an estimator that transports causal effects between domains, bypassing the need for strong assumptions in the target domain. We derive statistical guarantees on the uncertainty of this estimator, and we report empirical results and analyses that support the validity of Text-Transport across data settings. Finally, we use Text-Transport to study a realistic setting--hate speech on social media--in which causal effects do shift significantly between text domains, demonstrating the necessity of transport when conducting causal inference on natural language.
Over the past decade, a crisis of confidence in published scientific findings has catalyzed widespread response from the research community, particularly in the West. These responses have included policy discussions and changes to existing practice as well as computational infrastructure to support and evaluate research. Our work studies Indian researchers' awareness, perceptions, and challenges around research integrity. We explore opportunities for Artificial Intelligence (AI)-powered tools to evaluate reproducibility and replicability, centering cultural perspectives. We discuss requirements for such tools, including signals within papers and metadata to be included, and system hybridity (fully-AI vs. collaborative human-AI). We draw upon 19 semi-structured interviews and 72 follow-up surveys with researchers at universities throughout India. Our findings highlight the need for computational tools to contextualize confidence in published research. In particular, researchers prefer approaches that enable human-AI collaboration. Additionally, our findings emphasize the shortcomings of current incentive structures for publication, funding, and promotion.
Satellites play a vital role in remote communication where traditional communication mediums struggle to provide benefits over associated costs and efficiency. In recent years, satellite communication has achieved utter interest in the industry due to the achievement of high data rates through the massive deployment of LEO satellites. Because of the complex diversity in types of satellites, communication methodologies, technological obstacles, environmental limitations, elements in the entire ecosystem, massive financial impact, geopolitical conflict and domination, easier access to satellite communications, and various other reasons, the threat vectors are rising in the threat landscape. To achieve resilience against those, only technological solutions are not enough. An effective approach will be through security standards. However, there is a considerable gap in the industry regarding a generic security standard framework for satellite communication and space data systems. A few countries and space agencies have their own standard framework and private policies. However, many of those are either private, serve the specific requirements of specific missions, or have not been updated for a long time. This project report will focus on identifying, categorizing, comparing, and assessing elements, threat landscape, enterprise security architectures, and available public standards of satellite communication and space data systems. After that, it will utilize the knowledge to propose an updated standard framework for secure satellite communications and space data systems.
Learning controllers with offline data in decision-making systems is an essential area of research due to its potential to reduce the risk of applications in real-world systems. However, in responsibility-sensitive settings such as healthcare, decision accountability is of paramount importance, yet has not been adequately addressed by the literature. This paper introduces the Accountable Offline Controller (AOC) that employs the offline dataset as the Decision Corpus and performs accountable control based on a tailored selection of examples, referred to as the Corpus Subset. AOC operates effectively in low-data scenarios, can be extended to the strictly offline imitation setting, and displays qualities of both conservation and adaptability. We assess AOC's performance in both simulated and real-world healthcare scenarios, emphasizing its capability to manage offline control tasks with high levels of performance while maintaining accountability.
Like many optimizers, Bayesian optimization often falls short of gaining user trust due to opacity. While attempts have been made to develop human-centric optimizers, they typically assume user knowledge is well-specified and error-free, employing users mainly as supervisors of the optimization process. We relax these assumptions and propose a more balanced human-AI partnership with our Collaborative and Explainable Bayesian Optimization (CoExBO) framework. Instead of explicitly requiring a user to provide a knowledge model, CoExBO employs preference learning to seamlessly integrate human insights into the optimization, resulting in algorithmic suggestions that resonate with user preference. CoExBO explains its candidate selection every iteration to foster trust, empowering users with a clearer grasp of the optimization. Furthermore, CoExBO offers a no-harm guarantee, allowing users to make mistakes; even with extreme adversarial interventions, the algorithm converges asymptotically to a vanilla Bayesian optimization. We validate CoExBO's efficacy through human-AI teaming experiments in lithium-ion battery design, highlighting substantial improvements over conventional methods.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg
An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Deep/machine learning (ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, reasoning and quantifying different types of uncertainties to achieve effective decision-making have been much less explored in ML/DL than in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in KRR since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. We found that only a few studies have leveraged the mature uncertainty research in belief/evidence theories in ML/DL to tackle complex problems under different types of uncertainty. In this survey paper, we discuss several popular belief theories and their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability in ML/DL. In addition, we discuss three main approaches that leverage belief theories in Deep Neural Networks (DNNs), including Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along with their applicability in diverse problem domains. Based on our in-depth survey, we discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and finally, future research directions.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.