亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Model-based reinforcement learning (RL), which finds an optimal policy using an empirical model, has long been recognized as one of the corner stones of RL. It is especially suitable for multi-agent RL (MARL), as it naturally decouples the learning and the planning phases, and avoids the non-stationarity problem when all agents are improving their policies simultaneously using samples. Though intuitive and widely-used, the sample complexity of model-based MARL algorithms has not been fully investigated. In this paper, our goal is to address the fundamental question about its sample complexity. We study arguably the most basic MARL setting: two-player discounted zero-sum Markov games, given only access to a generative model. We show that model-based MARL achieves a sample complexity of $\tilde O(|S||A||B|(1-\gamma)^{-3}\epsilon^{-2})$ for finding the Nash equilibrium (NE) value up to some $\epsilon$ error, and the $\epsilon$-NE policies with a smooth planning oracle, where $\gamma$ is the discount factor, and $S,A,B$ denote the state space, and the action spaces for the two agents. We further show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge, by establishing a matching lower bound. This is in contrast to the usual reward-aware setting, with a $\tilde\Omega(|S|(|A|+|B|)(1-\gamma)^{-3}\epsilon^{-2})$ lower bound, where this model-based approach is near-optimal with only a gap on the $|A|,|B|$ dependence. Our results not only demonstrate the sample-efficiency of this basic model-based approach in MARL, but also elaborate on the fundamental tradeoff between its power (easily handling the more challenging reward-agnostic case) and limitation (less adaptive and suboptimal in $|A|,|B|$), particularly arises in the multi-agent context.

相關內容

To analyze the scaling potential of deep tabular representation learning models, we introduce a novel Transformer-based architecture specifically tailored to tabular data and cross-table representation learning by utilizing table-specific tokenizers and a shared Transformer backbone. Our training approach encompasses both single-table and cross-table models, trained via missing value imputation through a self-supervised masked cell recovery objective. To understand the scaling behavior of our method, we train models of varying sizes, ranging from approximately $10^4$ to $10^7$ parameters. These models are trained on a carefully curated pretraining dataset, consisting of 135M training tokens sourced from 76 diverse datasets. We assess the scaling of our architecture in both single-table and cross-table pretraining setups by evaluating the pretrained models using linear probing on a curated set of benchmark datasets and comparing the results with conventional baselines.

Multi-task learning (MTL), a learning paradigm to learn multiple related tasks simultaneously, has achieved great success in various fields. However, task balancing problem remains a significant challenge in MTL, with the disparity in loss/gradient scales often leading to performance compromises. In this paper, we propose a Dual-Balancing Multi-Task Learning (DB-MTL) method to alleviate the task balancing problem from both loss and gradient perspectives. Specifically, DB-MTL ensures loss-scale balancing by performing a logarithm transformation on each task loss, and guarantees gradient-magnitude balancing via normalizing all task gradients to the same magnitude as the maximum gradient norm. Extensive experiments conducted on several benchmark datasets consistently demonstrate the state-of-the-art performance of DB-MTL.

Self-supervised learning (SSL) techniques have achieved remarkable results in various speech processing tasks. Nonetheless, a significant challenge remains in reducing the reliance on vast amounts of speech data for pre-training. This paper proposes to address this challenge by leveraging synthetic speech to augment a low-resource pre-training corpus. We construct a high-quality text-to-speech (TTS) system with limited resources using SSL features and generate a large synthetic corpus for pre-training. Experimental results demonstrate that our proposed approach effectively reduces the demand for speech data by 90\% with only slight performance degradation. To the best of our knowledge, this is the first work aiming to enhance low-resource self-supervised learning in speech processing.

In an era where scientific experimentation is often costly, multi-fidelity emulation provides a powerful tool for predictive scientific computing. While there has been notable work on multi-fidelity modeling, existing models do not incorporate an important "conglomerate" property of multi-fidelity simulators, where the accuracies of different simulator components are controlled by different fidelity parameters. Such conglomerate simulators are widely encountered in complex nuclear physics and astrophysics applications. We thus propose a new CONglomerate multi-FIdelity Gaussian process (CONFIG) model, which embeds this conglomerate structure within a novel non-stationary covariance function. We show that the proposed CONFIG model can capture prior knowledge on the numerical convergence of conglomerate simulators, which allows for cost-efficient emulation of multi-fidelity systems. We demonstrate the improved predictive performance of CONFIG over state-of-the-art models in a suite of numerical experiments and two applications, the first for emulation of cantilever beam deflection and the second for emulating the evolution of the quark-gluon plasma, which was theorized to have filled the Universe shortly after the Big Bang.

Recent research has shown that language models have a tendency to memorize rare or unique token sequences in the training corpus. After deploying a model, practitioners might be asked to delete any personal information from the model by individuals' requests. Re-training the underlying model every time individuals would like to practice their rights to be forgotten is computationally expensive. We employ a teacher-student framework and propose a novel leave-one-out ensemble method to unlearn the targeted textual sequences that need to be forgotten from the model. In our approach, multiple teachers are trained on disjoint sets; for each targeted sequence to be removed, we exclude the teacher trained on the set containing this sequence and aggregate the predictions from remaining teachers to provide supervision during fine-tuning. Experiments on LibriSpeech and WikiText-103 datasets show that the proposed method achieves superior privacy-utility trade-offs than other counterparts.

We present an Open-Vocabulary 3D Scene Graph (OVSG), a formal framework for grounding a variety of entities, such as object instances, agents, and regions, with free-form text-based queries. Unlike conventional semantic-based object localization approaches, our system facilitates context-aware entity localization, allowing for queries such as ``pick up a cup on a kitchen table" or ``navigate to a sofa on which someone is sitting". In contrast to existing research on 3D scene graphs, OVSG supports free-form text input and open-vocabulary querying. Through a series of comparative experiments using the ScanNet dataset and a self-collected dataset, we demonstrate that our proposed approach significantly surpasses the performance of previous semantic-based localization techniques. Moreover, we highlight the practical application of OVSG in real-world robot navigation and manipulation experiments.

Off-policy learning, referring to the procedure of policy optimization with access only to logged feedback data, has shown importance in various real-world applications, such as search engines, recommender systems, and etc. While the ground-truth logging policy, which generates the logged data, is usually unknown, previous work simply takes its estimated value in off-policy learning, ignoring both high bias and high variance resulted from such an estimator, especially on samples with small and inaccurately estimated logging probabilities. In this work, we explicitly model the uncertainty in the estimated logging policy and propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning, with a theoretical convergence guarantee. Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator against an extensive list of state-of-the-art baselines.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.

Rehearsal, seeking to remind the model by storing old knowledge in lifelong learning, is one of the most effective ways to mitigate catastrophic forgetting, i.e., biased forgetting of previous knowledge when moving to new tasks. However, the old tasks of the most previous rehearsal-based methods suffer from the unpredictable domain shift when training the new task. This is because these methods always ignore two significant factors. First, the Data Imbalance between the new task and old tasks that makes the domain of old tasks prone to shift. Second, the Task Isolation among all tasks will make the domain shift toward unpredictable directions; To address the unpredictable domain shift, in this paper, we propose Multi-Domain Multi-Task (MDMT) rehearsal to train the old tasks and new task parallelly and equally to break the isolation among tasks. Specifically, a two-level angular margin loss is proposed to encourage the intra-class/task compactness and inter-class/task discrepancy, which keeps the model from domain chaos. In addition, to further address domain shift of the old tasks, we propose an optional episodic distillation loss on the memory to anchor the knowledge for each old task. Experiments on benchmark datasets validate the proposed approach can effectively mitigate the unpredictable domain shift.

北京阿比特科技有限公司