亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Exact travelling wave solutions to the two-dimensional stochastic Allen-Cahn equation with multiplicative noise are obtained through the hyperbolic tangent (tanh) method. This technique limits the solutions to travelling wave profiles by representing them with a finite tanh power series. This study focuses on how multiplicative noise affects the dynamics of these travelling waves, in particular, occurring of wave propagation failure due to high levels of noise.

相關內容

We give a complete complexity classification for the problem of finding a solution to a given system of equations over a fixed finite monoid, given that a solut ion over a more restricted monoid exists. As a corollary, we obtain a complexity classification for the same problem over groups.

Spectral deferred corrections (SDC) are a class of iterative methods for the numerical solution of ordinary differential equations. SDC can be interpreted as a Picard iteration to solve a fully implicit collocation problem, preconditioned with a low-order method. It has been widely studied for first-order problems, using explicit, implicit or implicit-explicit Euler and other low-order methods as preconditioner. For first-order problems, SDC achieves arbitrary order of accuracy and possesses good stability properties. While numerical results for SDC applied to the second-order Lorentz equations exist, no theoretical results are available for SDC applied to second-order problems. We present an analysis of the convergence and stability properties of SDC using velocity-Verlet as the base method for general second-order initial value problems. Our analysis proves that the order of convergence depends on whether the force in the system depends on the velocity. We also demonstrate that the SDC iteration is stable under certain conditions. Finally, we show that SDC can be computationally more efficient than a simple Picard iteration or a fourth-order Runge-Kutta-Nystr\"om method.

This research article discusses a numerical solution of the radiative transfer equation based on the weak Galerkin finite element method. We discretize the angular variable by means of the discrete-ordinate method. Then the resulting semi-discrete hyperbolic system is approximated using the weak Galerkin method. The stability result for the proposed numerical method is devised. A priori error analysis is established under the suitable norm. In order to examine the theoretical results, numerical experiments are carried out.

Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research. However, in clinical practice, it frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients, limiting the utilization of deep learning models trained on multi-sequence data. One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition. State-of-the-art methods tackling this problem are based on convolutional neural networks (CNN) which usually suffer from spectral biases, resulting in poor reconstruction of high-frequency fine details. In this paper, we propose Conditional Neural fields with Shift modulation (CoNeS), a model that takes voxel coordinates as input and learns a representation of the target images for multi-sequence MRI translation. The proposed model uses a multi-layer perceptron (MLP) instead of a CNN as the decoder for pixel-to-pixel mapping. Hence, each target image is represented as a neural field that is conditioned on the source image via shift modulation with a learned latent code. Experiments on BraTS 2018 and an in-house clinical dataset of vestibular schwannoma patients showed that the proposed method outperformed state-of-the-art methods for multi-sequence MRI translation both visually and quantitatively. Moreover, we conducted spectral analysis, showing that CoNeS was able to overcome the spectral bias issue common in conventional CNN models. To further evaluate the usage of synthesized images in clinical downstream tasks, we tested a segmentation network using the synthesized images at inference.

The Crank-Nicolson (CN) method is a well-known time integrator for evolutionary partial differential equations (PDEs) arising in many real-world applications. Since the solution at any time depends on the solution at previous time steps, the CN method is inherently difficult to parallelize. In this paper, we consider a parallel method for the solution of evolutionary PDEs with the CN scheme. Using an all-at-once approach, we can solve for all time steps simultaneously using a parallelizable over time preconditioner within a standard iterative method. Due to the diagonalization of the proposed preconditioner, we can prove that most eigenvalues of preconditioned matrices are equal to 1 and the others lie in the set: $\left\{z\in\mathbb{C}: 1/(1 + \alpha) < |z| < 1/(1 - \alpha)~{\rm and}~\Re{\rm e}(z) > 0\right\}$, where $0 < \alpha < 1$ is a free parameter. Besides, the efficient implementation of the proposed preconditioner is described. Given certain conditions, we prove that the preconditioned GMRES method exhibits a mesh-independent convergence rate. Finally, we will verify both theoretical findings and the efficacy of the proposed preconditioner via numerical experiments on financial option pricing PDEs.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

In this study, we explore data assimilation for the Stochastic Camassa-Holm equation through the application of the particle filtering framework. Specifically, our approach integrates adaptive tempering, jittering, and nudging techniques to construct an advanced particle filtering system. All filtering processes are executed utilizing ensemble parallelism. We conduct extensive numerical experiments across various scenarios of the Stochastic Camassa-Holm model with transport noise and viscosity to examine the impact of different filtering procedures on the performance of the data assimilation process. Our analysis focuses on how observational data and the data assimilation step influence the accuracy and uncertainty of the obtained results.

Continuous-time algebraic Riccati equations can be found in many disciplines in different forms. In the case of small-scale dense coefficient matrices, stabilizing solutions can be computed to all possible formulations of the Riccati equation. This is not the case when it comes to large-scale sparse coefficient matrices. In this paper, we provide a reformulation of the Newton-Kleinman iteration scheme for continuous-time algebraic Riccati equations using indefinite symmetric low-rank factorizations. This allows the application of the method to the case of general large-scale sparse coefficient matrices. We provide convergence results for several prominent realizations of the equation and show in numerical examples the effectiveness of the approach.

We propose a new method called the Metropolis-adjusted Mirror Langevin algorithm for approximate sampling from distributions whose support is a compact and convex set. This algorithm adds an accept-reject filter to the Markov chain induced by a single step of the Mirror Langevin algorithm (Zhang et al., 2020), which is a basic discretisation of the Mirror Langevin dynamics. Due to the inclusion of this filter, our method is unbiased relative to the target, while known discretisations of the Mirror Langevin dynamics including the Mirror Langevin algorithm have an asymptotic bias. For this algorithm, we also give upper bounds for the number of iterations taken to mix to a constrained distribution whose potential is relatively smooth, convex, and Lipschitz continuous with respect to a self-concordant mirror function. As a consequence of the reversibility of the Markov chain induced by the inclusion of the Metropolis-Hastings filter, we obtain an exponentially better dependence on the error tolerance for approximate constrained sampling. We also present numerical experiments that corroborate our theoretical findings.

Multi-product formulas (MPF) are linear combinations of Trotter circuits offering high-quality simulation of Hamiltonian time evolution with fewer Trotter steps. Here we report two contributions aimed at making multi-product formulas more viable for near-term quantum simulations. First, we extend the theory of Trotter error with commutator scaling developed by Childs, Su, Tran et al. to multi-product formulas. Our result implies that multi-product formulas can achieve a quadratic reduction of Trotter error in 1-norm (nuclear norm) on arbitrary time intervals compared with the regular product formulas without increasing the required circuit depth or qubit connectivity. The number of circuit repetitions grows only by a constant factor. Second, we introduce dynamic multi-product formulas with time-dependent coefficients chosen to minimize a certain efficiently computable proxy for the Trotter error. We use a minimax estimation method to make dynamic multi-product formulas robust to uncertainty from algorithmic errors, sampling and hardware noise. We call this method Minimax MPF and we provide a rigorous bound on its error.

北京阿比特科技有限公司